Soil Survey Investigations Report No. 33

Soil Survey Laboratory Data and Descriptions for Some Soils of ...

.. MINNESOTA

SOIL CONSERVATION SERVICE U.S. DEPARTMENT OF AGRICULTURE In cooperation with MINNESOTA AGRICULTURAL EXPERIMENT STATION

- Soil survey investigations reports already published:
- Soil Survey Laboratory Methods and Procedures for SSIR No. 1 Collecting Soil Samples
- SSIR No. 21 A Toposequence of Soils in Tonalite Grus in the Southern California Peninsular Range

Soil Survey Laboratory Data and Descriptions for Some Soils of:

	Some Soils of:
SSIR No. 2	North Dakota
SSIR No. 3	Iowa
SSIR No. 4	Kansas
SSIR No. 5	Nebraska
SSIR No. 6	Arkansas, Louisiana, and Missouri
SSIR No. 7	Montana
SSIR No. 8	Wyoming
SSIR No. 9	Minnesota
SSIR No. 10	Colorado
SSIR No. 11	Oklahoma
SSIR No. 12	Puerto Rico and the Virgin Islands
SSIR No. 13	Mississippi
SSIR No. 14	Kentucky
SSIR No. 15	Tennessee
SSIR No. 16	North Carolina, South Carolina, and Georgia
SSIR No. 17	Wisconsin
SSIR No. 18	Indiana
SSIR No. 19	Illinois
SSIR No. 20	New England States
SSIR No. 22	Alabama and Florida
SSIR No. 23	Nevada
SSIR No. 24	California
SSIR No. 25	New York
SSIR No. 26	New Jersey
SSIR No. 27	Pennsylvania
SSIR No. 28	Arizona
SSIR No. 29	Hawaii
SSIR No. 30	Texas
SSIR No. 31	Iowa
SSIR No. 32	Wyoming

Soil Survey Laboratory Data and Descriptions for Some Soils of...

... MINNESOTA

September 1978

SOIL CONSERVATION SERVICE • U.S. DEPARTMENT OF AGRICULTURE In cooperation with MINNESOTA AGRICULTURAL EXPERIMENT STATION

PREFACE

The Soil Survey Investigations Report (SSIR) Series was established to preserve and make available technical information resulting from soil survey investigations. SSIR No. 1, "Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples," revised April 1972, describes in detail the methods used in the soil survey laboratories. One report involves a single specific study. Other reports in the series contain pedon descriptions and data from the individual states and Puerto Rico and the Virgin Islands. The entire series is listed on the inside front cover.

This report contains pedon descriptions and data obtained in Minnesota from 1954 to 1973. The majority of laboratory analyses were conducted at the Soil Survey Laboratory Unit, Lincoln, Nebraska.

Laboratory data for different soils cannot always be compared without allowance for the method. Methods are indexed by code or footnote in data sheet column headings and are identified briefly on the following two pages. Detailed explanations of coded procedures are in SSIR No. 1.

Many of the soil descriptions were prepared as working documents, not necessarily for publication. Some contain unusually detailed information pertinent to specific soil survey investigations. Such information, including older concepts of soil series, relationships among pedons, and field estimates of properties, is useful in a publication of this type. Editing is, therefore, minimal with emphasis toward preservation of descriptive data.

Many pedons no longer represent the soil series with which they were originally identified; a few represent series being considered for reclassification. All were checked against series classification as of December 1976. Some pedons are called taxadjuncts to series. All pedons are classified to the family level. In the taxonomic and geographic indexes pedons are arranged by taxonomic unit.

METHODS CODE SYMBOLS

1. SAMPLE COLLECTION AND PREPARATION 5. ION-EXCHANGE ANALYSES A. Field sampling A. Cation-exchange capacity 1. NH_LOAC, pH 7.0 a. Direct distillation 2. NaOAC, pH 8.2 1. Site selection 2. Soil sampling a. Stony soils b. Marsh and swamp soils a. Centrifuge method B. Laboratory preparation Sum of cations 1. Standard (air dry) a. Acidity by BaCl2-TEA, pH 8.2; bases a. Square-hole 2-mm sieve b. Round-hole 2-mm sieve by NH, OAc, pH 7.0 b. Sum of bases plus Al 6. NH₄OAc, pH 7.0 leaching tube a. Direct distillation 2. Field moist Carbonate-containing material Carbonate-indurated material B. Extractable bases 1. NH4OAc extraction a. Uncorrected b. Corrected (exchangeable) 2. CONVENTIONS A. Size-fraction base for reporting 1. <2-mm 2. <size specified KC1-TEA extraction, pH 8.2 3. KCl-TEA, pH 8.2 (revised) B. Data sheet symbols a. Uncorrected b. Corrected (exchangeable) 4. NH₁OAc, pH 7.0 (modified) a. Uncorrected tr: trace, not measurable by quantitative procedure used or less than reportable amount - : analysis run but not detected b. Corrected (exchangeable) blank: analysis not run Base saturation 1. NHLOAC, pH 7.0 2. NaOAC, pH 8.2 3. Sum of cations nd: analysis not run less than reported amount or none present 3. PARTICLE-SIZE ANALYSES A. Particles <2-mm (pipet method) Sodium saturation (exchangeable Na pct.) 1. NaOAc, pH 8.2 2. NHiOAc, pH 7.0 Sodium-adsorption ratio Air-dry samples a. Carbonate and noncarbonate clay b. Fine clayc. Water-dispersible clay Calcium saturation 1. NH₁OAc, pH 7.0 6. CHEMICAL ANALYSES B. Particles >2-mm Weight estimates a. By field and laboratory weightsb. From volume and weight estimates A. Organic carbon 1. Acid-dichromate digestion a. FeSO, titration b. CO₂ evolution, gravimetric Volume estimates 4. FABRIC-RELATED ANALYSES a. CO₂ evolution I b. CO₂ evolution II B. Nitrogen² A. Bulk density 1. Saran-coated clods a. Field state b. Air dry b. Air dry c. 30-cm absorption d. 1/3-bar desorption I e. 1/3-bar desorption II f. 1/3-bar desorption III g. 1/10-bar desorption h. Oven dry 1. Kjeldahl digestion a. Ammonia distillation C. Iron 1. Dithionite extraction a. Dichromate titration EDTA titration Dithionite-citrate extraction Cores a. Field moist Orthophenanthroline colorimetry a. Atomic absorption Water retention Pressure-plate extraction (1/3 or 1/10-bar) 3. Dithionite-citrate-bicarbonate extraction a. Sieved samples a. Potassium thiocyanate colorimetry Pyrophosphate-dithionate extraction b. Soil pieces c. Natural clods Sodium-pyrophosphate extraction 2. Pressure-membrane extraction (15-bars) a. Atomic absorption Ammonium oxalate extraction a. Field-moist samples a. Atomic absorption Sand-table absorption E. Calcium carbonate Field state 5. Air dry 1. HCL treatment C. Water-retention difference a. Gas volumetric 1. 1/3-bar to 15 bars b. Manometric c. Weight loss d. Titrimetric 2. 1/10-bar to 15 bars D. Linear extensibility Sensitive qualitative method 1. Dry to moist a. Visual, gas bubbles E. Micromorphology 1. Thin sections G. Aluminum a. Preparation 1. KCl extraction I, 30 min. a. Aluminon I b. Interpretation b. Aluminon II c. Moved-clay percentage c. Aluminon III d. Fluoride titration e. Atomic absorption F. Plasticity index 1. Liquid limit 2. Upper plastic limit 2. KCl extraction II, overnight a. Aluminon I

METHODS CODE SYMBOLS -- continued

6. CHEMICAL ANALYSES (cont.) 6. CHEMICAL ANALYSES (cont.) 3. NHLOAc extraction 2. NH4OAc extraction a. Flame photometry b. Atomic absorption a, Aluminon III 4. NaOAc extraction a. Aluminon III Q. Potassium 5. Sodium pyrophosphate extraction 1. Saturation extract a. Atomic absorption a. Flame photometry 6. Ammonium oxalate extraction b. Atomic absorption a. Atomic absorption 2. NH₄OAc extraction a. Flame photometry 7. Dithionite-citrate extraction a. Atomic absorption b. Atomic absorption H. Extractable acidity R. Sulfur 1. BaCl2-triethanolamine I a. Back-titration with HCl 1. NaHCO3 extract, pH 8.5 a. Methylene blue 2. Bacl₂-triethanolamine II a. Back-titration with HCl 2. HCl release (sulfide) a. Iodine titration I. Carbonate S. Total phosphorus 1. Saturation extract 1. Perchloric acid digestion a. Acid titration a. Molybdovanadophosphoric acid Bicarbonate colormetry 1. Saturation extract a. Acid titration K. Chloride 1. Saturation extract 7. MINERALOGY a. Mohr titration A. Instrumental analysis b. Potentiometric titration 1. Preparation Sulfate Carbonate removal 1. Saturation extract Organic-matter removal ъ. c. d. a. Gravimetric, BaSO4 Iron removal b. EDTA titration Particle-size fractionation 2. NH4OAc extraction a. Gravimetric, BaSO4 e. PSDA pretreatment 2. X-ray diffraction Nitrate a. Thin film on glass, solution pretreatment b. Thin film on glass, resin pretreatment Saturation extract a. PDS acid colorimetryb. Diphenylamine c. Thin film on glass, NaPO, pretreatment g. Powder mount, diffractometer recording h. Powder mount, camera recording N. Calcium 1. Saturation extract Differential thermal analysis a. EDTA titration b. Atomic absorption Optical analysis 1. Grain studies Atomic absorption 2. NH₄OAc extraction 2. Electron microscopy a. EDTA-alcohol separation b. Oxalate-permanganate I Total analysis 1. Chemical c. Oxalate-permanganate II 2. X-ray emission spectrography Fe, Al, and Mn removed Surface area d. Oxalate-cerate 1. Glycerol retention Atomic absorption 8. MISCELLANEOUS 3. NH₄Cl-EtOH extraction A. Saturated paste, mixed EDTA titration 1. Saturation extract 4. KCl-TEA extraction a. Conductivityb. Conductivity, quick test a. Oxalate-permanganate b. EDTA titration 2. Conductivity, saturated paste c. Atomic absorption Saturated pasts, capillary rise O. Magnesium 1. Saturation extract 1. Saturation extract a. Conductivity a. EDTA titration C. pH b. Atomic absorption Soil suspensions 2. NH₄OAc extraction a. Water dilutionb. Saturated paste a. * EDTA-alcohol separation b. Phosphate titration e. KCl c. Atomic absorption e. CaCl. 3. NH4Cl-EtOH extraction D. Ratios and estimates EDTA titration To total clay KCl-TEA extraction To noncarbonate clay a. Phosphate titration 3. Ca to Mg (extractable) 4. Estimated clay percentage b. EDTA titration c. Atomic absorption 5. Estimated total salt P. Sodium Soil resistivity

1. Saturated paste

1. Saturation extract

a. Flame photometryb. Atomic absorption

classification index $^{\underline{1}}$

	ALFISOL	1484	740	rage
	ALFISOL		Fine-silty, mixed, mesic	
	ATLAY 73		Fayette	19*
<u> </u>	QUALF		Payette	23*
	TO A CT A CHAT TO		Payette	25*
	FRAGIAQUALF		Seaton 17/	21*
	Acude Threadenne 15		Seaton <u>17</u> /	27*
	Aeric Fragiaqualf		78	
	Coarse-loamy, mixed, frigid	87	Pine, montmorillonitic, mesic	
	Ronneby series	0/	Erin	17*
	GLOSSAQUALF		Armalida Warindald	
	GLOODINGUALIT		Aquollic Hapludalf Fine-losmy, mixed, mesic	
	Aeric Glossaqualf		Kasson series	41
	Fine-losmy, mixed, mesic		Skyberg taxadjunct	111
	Sargeant taxadjunct	89	onyourg cameajance	***
			Fine, montmorillonitic, mesic	
	OCHRAQUALF		Series not designated 20/	45*
	•		_	
	Mollic Ochraqualf		Glossoboric Hapludalf	
	Fine, montmorillonitic, mesic		Fine-loamy, mixed, mesic	
	Series not designated 19/	43*	Hayden texadjunct 11/	33*
			·	
<u>B</u>	ORALF		Mollic Hapludalf	
			Coarse-loamy, mixed, mesic	
	EUTROBORALF		Erin taxadjunct <u>\$</u> /	15*
	Typic Eutroboralf		entisol	
	Pine, mixed			
	Hibbing series	37	ORTHENT	
	Glossic Eutroboralf		UDORTHENT	
	Coarse-loamy, mixed	•	Ad. 113AA	
	Automba series	9	Aquic Udorthent	
	94-a 1		Sandy over loamy, mixed, frigid	117
	Fine-losmy, mixed Duluth series	27	Vlen taxadjunct	11/
	Datatu series	47	DC AMMUUT	
	Psammentic Eutroboralf		PSAMENT	
	Coarse-loamy, mixed		UDIPSAMMENT	
	Anoka taxadjunct 2/	9*	UD IT SATELEM I	
	more texaclence E	•	Typic Udipsamment	
	FRAGIBORALF		Mixed, frigid	
	•		Menehga	47*
	Typic Fragiboralf		Menahga	49*
	Coarse-loamy, mixed		Nymore 14/	39*
	Ahmeek taxadjunct	3	Omega	77
	Brainerd taxadjunct 4/	11*	Omega	79
	Flak texadiunct 9/	13¢	Sarta11 15/	55*
1	•			
	More texadiunct	73	Sartell <u>15/</u>	57*
	More texadjunct	75	Sartell 16/	77*
		, -	Sartell 16/	79*
	Fine-loamy, mixed		Series not designated $\frac{21}{}$	59*
	Flak taxadjunct 10/	29*	Series not designated $\frac{21}{}$	61*
	-			
	Aquic Fragiboralf		Aquic Udipsamment	
	Coarse-loamy, mixed		Mixed, frigid	
	Mora series	69	Hiwood	35*
	Mora series	71	Hiwood	37*
	Nokay taxadjunct <u>13</u> /	51* -		•
	0-0000		HISTOSOL	
	GLOSSOBORALF			
	m and		FIBRIST	
	Eutric Glossoboralf		CDUACHOUT BOTCT	
	Coarse-loamy, mixed Anoka	7*	SPHAGNOFIBRIST	
	MUULE	/	Typic Sphagnofibrist	
	Fine, mixed		Dystic, frigid	
	Hibbing taxadjunct	39	Waskish series	123
	nanced themselfens	~~		
บ	DALF		HEMIST	
_				
	HAPLUDALF		BOROHEMIST	
	Typic Hapludalf		Typic Borohemist	
	Fine-loamy, mixed, mesic		Euic	_
	Hayden	31*	Mooselske series	67
			Rifle series	83

CLASSIFICATION INDEX1/

	Page		Page
HISTOSOLContinued		FRAGIOCHREPT	
HEMISTContinued		Typic Fragiochrept	
BOROHEMISTContinued		Coarse-loamy, mixed, frigid Milaca series Milaca series	61 63
Terric Borohemist		MIIACA SOFIES	0.5
Loamy, mixed, euic Series not designated	107	Aquic Fragiochrept Coarse-loamy mixed, frigid Brainerd 2/	53*
SAPRIST			
BOROSAPRIST		UMBREPT	
BOROSA KISI		HAPLUMBREPT	
Typic Borosaprist		The state of the s	
Dystic Loxley series	43	Entic Haplumbrept Sandy, mixed, frigid	
,		Series not designated 18/	41*
Euic	45	MOLLISOL	
Lupton series	43	MOLLISOL	
Terric Borosaprist Loamy, mixed, euic		ALBOLL	
Cathro series	15	ARGIALBOLL	
Cathro series	17	m	
Lupton taxadjunct Series not designated	47 105	Typic Argialboll Very fine, montmorillonitic, mesic	
Series not designated	109	Barbert taxadjunct	11
Carder on annual ministration and annual mode		ACHOT	
Sandy or sandy skeletal, mixed, euic Markey series	53	AQUOLL	
Markey series	55	ARGIAQUOLL	
INCEPTISOL		Typic_Argiaquoll	
1000 11000		Fine-loamy, mixed, mesic	
AQUEPT		Cordova 🛂	71*
HAPLAQUEPT		Cordova series	21
		Fine, montmorillonitic, mesic	
Typic Haplaquept		Minnetonka series	65
Fine-loamy, mixed, frigid Series not designated	93	CALCIAQUOLL	
Fine, montmorillonitic, nonacid, frigid	75*	Typic Calciaguell	
Series not designated 22/	, J.	Coarse-loamy, frigid Rockwell series	85
Mollic Haplaquept		•	
Coarse-loamy, mixed, frigid	95	Coarse-loamy over sandy or sandy-skeletal,	
Series not designated Series not designated	95 97	frigid Arveson taxadjunct	5
		Arveson' taxadjunct	7
HUMAQUEPT		Common learn over aloner field	
Histic Humaquept		Coarse-loamy over clayey, frigid Series not designated	101
Fine-losmy, mixed, nonacid, frigid			
Blackhoof series	13	Aeric Calciaguoll	
OCHREPT		Sandy, frigid Ulen series	113
		Ulen series	115
DYSTROCHREPT		Coarse-loamy over clayey, frigid	
Typic Dystrochrept		Series not designated	99
Sandy, mixed, frigid		Series not designated	103
Cromwell series	23	HAPLAQUOLL	
Coarse-loamy over sandy or sandy skeletal,		mm made of the	
mixed, frigid	10	Typic Haplaquoll	
Cloquet series	19	Coarse-loamy, mixed, frigid Adolph	3*
EUTROCHREPT		Adolph Adolph	5*
		•	
Typic Eutrochrept Fine-loamy, mixed, mesic		Fine-loamy, mixed, mesic Maxcreek taxadjunct	59
Racine taxadjunct	81	Webster	69*

CLASSIFICATION INDEX1/

MOLLISOLContinued	Page
AQUOLLContinued	
HAPLAQUOILContinued	
Typic Haplaquoll—Continued Fine-loamy, mixed (calcareous), mesic Canisteo $\frac{5}{6}$ /Canisteo	67 * 73 *
Fine-silty, mixed, mesic Madelia series	51
Fine, montmorillonitic, mesic Marna series Waldorf series Waldorf series Cumulic Haplaquoll	57 119 121
Fine, montmorillonitic, mesic Lura series	49
BOROLL	
HAPLOBOROLL	
Aquic Haploboroll Sandy, mixed Flaming series	29
Undertic Haploboroll Fine, montmorillonitic Hattie 12/ Hattie 12/	63* 65*
Udic Haploboroll Coarse-loamy, mixed Series not designated	91
Fine-loamy, mixed Formdale series Formdale series	31 33
<u>ndort</u>	
ARGIUDOLL	
Typic Argiudoll Fine-loamy, mixed, mesic Dakota taxadjunct	25
HAPLUDOLL	
Aquic <u>Hapludoll</u> Fine, montmorillonitic, mesic Guckeen series	35
+n15 ** CCTD A	

*Page number refers to SSIR 9-

 $\frac{1}{2}$ See Soil Series index for footnotes $\frac{2}{2}$ through $\frac{22}{2}$.

CLASSIFICATION INDEX $^{1/}$ SSIR No. 9

	<u>Page</u>	DWITTON	Page
ALFISOL AQUALF		ENTISOL PSAMMENT	
			
OCHRAQUALF		UDIPSAMMENT	
Mollic Ochraqualf		Typic Udipsamment	
Fine, montmorillonitic, mesic	_	Mixed, frigid	
Series not designated <u>19</u> /	43	Menahga	47
		Menahga	49
BORALF			39
		Sartell 15/	55
EUTROBORALF		Sartell 15/	<u>57</u>
		Sartell ±0/	77
Psammentic Eutroboralf		Sartell 16/	79
Coarse-loamy, mixed	_	Series not designated $\frac{21}{21}$	39 55 57 77 79 59 61
Anoka taxadjunct 2/	9	Series not designated 21/	91
FRAGIBOROALF		Spodic Udipsamment	
4.4		Mixed, frigid	
Typic Fragiboralf		Hiwood	35
Garage Laborated		Hiwood	35 37
Brainerd taxadjungt	11		
Flak taxadjunct 2/	13	INCEPTISOL	
<u>-</u>			
Fine-loamy, mixed		AQUEPT	
Flak taxadjunct 10/	29		
		HAPLAQUEPT	
Aquic Fragiboralf			
Coarse-loamy, mixed 13/		Typic Haplaquept	
Nokay taxadjunct 13/	51	Fine, montmorillonitic, nonacid, frigid Series not designated 22/	
GLOSSOBORALF		Series not designated	75
GTODD ODO 154 III.		OCHREPT	
Eutric Glossoboralf		<u></u>	
Coarse-loamy, mixed		FRAGIOCHREPT	
Anoka	7		
		Aquic Fragiochrept	
UDALF		Coarse-loamy, mixed, frigid	
		Brainerd 3/	53
HAPLUDALF			
Maria Mariadal 6		UMBREPT	
Typic Hapludalf			
Fine-loamy, mixed, mesic Hayden	31	HAPLUMBREPT	
imyacii	٦٢,	Entic Haplumbrept	
Fine-silty, mixed, mesic		Sandy, mixed, frigid	
Fayette	19	Series not designated 18/	41
Fayette	23	octice not designated —	72
Fayette	25	MOLLISOL	
Seaton <u>17</u> /,	21		
Seaton <u>IT</u> /	27	AQUOLL	
			
Aquollic Hapludalf		ARGIAQUOLL	
Fine, montmorillonitic, mesic	45	•	
Series not designated20/		Typic Argiaquoll	
		Fine-loamy, mixed, mesic	
Glossoboric Hapludalf		Cordova 1/	71
Fine-loamy, mixed, mesic	33		
Series not designated <u>ll</u> /		HAPLAQUOLL	
Fine, montmorillonitic, mesic		Typic Haplaquoll	
Erin	17	Coarse-loamy, mixed, frigid	
		Adolph	3
Mollic Hapludalf		Adolph	3 5
Coarse-loamy, mixed, mesic		•	_
Erin taxadjunct 8/	15	Fine-loamy, mixed, mesic	_
		Webster	69
		Pino-loams mixed (aslasses) '	
		Fine-loamy, mixed (calcareous), mesic	67
		Canisteo 2/ Canisteo 6/	73

CLASSIFICATION INDEX 1/SSIR No. 9--Continued

Page

BOROLL

HAPLOBOROLL .

Udertic Haploboroll Fine, montmorillonitic Hattie 12/ Hattie 12/

63 65

 $\frac{1}{2}$ See Soil Series index for footnotes $\underline{2}$ through $\underline{22}$.

GEOGRAPHICAL INDEX

<u>Classification</u>	Soil Series 1/	Page	Classification	Soil Series 1/	Page
BENTON COUNT	<u>: Y</u>		Inceptisol Ochrept		
Alfisol			Eutrochrept	Racine taxadjunct	81
Aqualf Pragiaqualf	Ronneby	87	FILLMORE COU	NTY	
Boralf			Alfisol		
. Fragiboralf	Mora Mora	69 71	Udalf Hapludalf	Fayette	19*
	Mora taxadjunct	73	napiddaii	Favette	23*
	·			Seaton 17/	21*
Inceptisol Ochrept			FREEBORN COU	итч	
Fragiochrept	Milaca	61	000 440444	<u> </u>	
BLUE EARTH C	OUNTY		Alfisol Aqualf		
Mollisol			Ochraqualf	Series not designated 19/	43*
Alboll			Udalf	201	
Argialboll	Barbert taxadjunct	11	Hapludalf	Series not designated 20/	45*
Aquol1			Mollisol		
Argiaquoll	Cordova	21	Aquo11		
	Minnetonka	65	Haplaquoll	Maxcreek taxadjunct	59
Haplaquol1	Lura	49	Udo11		
	Madelia	51	Argiudoll	Dakota taxadjunct	25
	Marna Waldorf	57 119	HOUSTON COUN	יי י	
	Waldorf	121	HOUSTON COUN	<u> </u>	
			Alfisol		
Vdoll Hapludoll	Guckeen	35	Udalf Hapludalf	Fayette	25*
CARLTON COUR		33	ISANTI COUNT	•	25
•	<u> </u>		•		
Alfisol Boralf			Alfisol Boralf		
Eutroboralf	Automba	9	Eutroboralf	Anoka taxadjunct 2/	9*
	Duluth	27			
Fragiboralf	Ahmeek taxadjunct	3	Glossoboralf	Anoka	7*
	Mora taxadjunct	75	ITASKA COUNT	<u> </u>	
Entisol			114-41		
Psemment			Histosol Saprist		
Udipsamment	Omega	77	Borosaprist	Loxley	43
	Omega	79		Lupton	45
Inceptisol			KITTSON COUN	TY	
Aquept		10			
Humaquept	Blackhoof	13	Histosol Saprist		
Ochrept			Borosaprist	Cathro	15
Dystrochrept	Cloquet Cromwell	19 23		Markey Markey	53 55
	CIUMWCII	23			105
CROW WING CO	UNTY				
Alfisol			KOOCHICHING	COUNTY	
Boralf			Histosol		
Fragiboralf	Brainerd taxadjunct 4/ Flak taxadjunct 9/	11* 13*	Hemist Borohemist	Mooselake	67
	Flak texadiunct 10/	29*	BO! OHEMISE		107
	Nokay taxadjunct 13/	51*	nd .e.	_	
Inceptisol			Saprist Borosaprist	Lupton taxadjunct	47
Ochrept	1/		•	- f	
Fragiochrept	Brainerd 3/	53*	Inceptisol		
DODGE COUNTY	!		Aquept Haplaquept	Series not designated 22/	75*
	•			Series not designated	93
Alfisol Udalf					
Hapludalf	Kasson	41			
	Skyberg taxadjunct	111			

GEOGRAPHICAL INDEX

		SOGRAPHICAL	, TUDEX	4./	
Classification	Soil Series 1/	Page	Classification	Soil Series 1/	Page
LAKE OF THE	OODS COUNTY		SHERBURNE CO	UNTY	
Entisol Psamment			Entisol Psamment		
Udipsamment	Hiwood Hiwood	35* 37*	Udipsamment	Sartell $\frac{15}{15}$ / Sartell $\frac{15}{15}$ /	55* 57*
		37		Sartell 16/ Sartell 16/	77* 79*
MILLE LACS C	UUNTI				75"
Inceptisol			STEVENS COUN	<u>IY</u>	1
Fragiochrept	Milaca	63	Mollisol Boroll		
Mollisol Aguoll			Haploboroll	Formdale Formdale	31 33
Haplaquoll	Adolph	3*		Hattie 12/	63*
	Adolph	5*		Hattie 12/ Series not designated	65 * 91
MOWER COUNTY	<u> </u>		WADENA COUNT	<u> Y</u>	
Alfisol Udalf			Entisol		
Glossudalf	Sargeant taxadjunct	89	Psamment	4	
NORMAN COUNT	<u>r y</u>		Udipsamment	Menahga Menahga	47 * 49 *
Entisol			Inceptisol		
Orthent	Win houselines	117	Aquept	Series not designated	95
Udorthent	Ulen taxadjunct	117	Haplaquept	Series not designated	97
Mollisol Aquoll			WASEGA COUNT	<u> </u>	
Calciaquol1	Arveson taxadjunct Arveson taxadjunct	5 7	Mollisol		
	Ulen	113	Aquoll	1/	
	Ulen	115	Arg1aquo11	Cordova Z/	71*
Boroll Haploboroll	Flaming	29	Haplaquol1	Canisteo $\frac{5}{6}$ / Canisteo $\frac{6}{6}$ / Webster	67* 73* 69*
POLK COUNTY			WILKIN COUNT	. Y	
Histosol			Mollisol	•	
Saprist Borosaprist	Cathro	17	Aquoll		
RICE COUNTY			Calciaquoll	Rockwell Series not designated	85 99
Alfisol			•	Series not designated Series not designated	101 103
Udalf		17*		_	
Hapludalf	Erin Erin taxadjunct <u>8</u> /	15*	WINONA COUNT	<u> </u>	
ST. LOUIS CO	UNTY		Alfisol Udalf		
Alfisol			Hapludalf	Seaton 17/	27*
Boralf			WRIGHT COUNT	<u>. </u>	
Eutroboralf	Hibbing	37	Alfisol		
Glosmoboralf	Hibbing taxadjunct	39	Udalf Hapludalf	Hayden	31*
Entisol <i>Psa</i> mment			Entisol	Hayden taxadjunct 11/	33*
Udipsamment	Series not designated $\frac{21}{21}$ Series not designated	59* 61*	Psamment Udipsamment	Nymore 14/	39*
	Serves not designates		-	.,,	
Histosol Fibrist			Inceptisol Umbrept	<i>i</i>	
Sphagnofibrist	Waskish	123	Haplumbrept	Series not designated 1	8/ 41*
Hemist Borohemist	Rifle	83			
Saprist Borosaprist	Series not designated	109			
*Page number refer - See Soil Series	s to SSIR 9. index for footnotes <u>2</u> / thro	ugh <u>22</u> /.			

	OUTE OBILES INDEX		
	Soil Survey		
Series	No. 1/	Classification	Page
Adolph	S57MN-48-2	Haplaquoll	3*
Adolph	S57MN-48-5	Haplaquoll	5* 3
Ahmeek taxadjunct	568MN-9-2 S61MN-30-1	Fragiboralf Glossoboralf	3 7*
Anoka	561MN-30-1 561MN-30-2	Eutroboralf 2/	/^ 9*
Anoka taxadjunct	567MN-54-1	Calciaquoll	5
Arveson taxadjunct Arveson taxadjunct	S67MN-54-1 S67MN-54-2	Calciaquoll	7
Automba	S68MN-9-9	Eutroboralf	ģ
		2446444	•
Barbert taxadjunct	S69MN-7-4	Argialboll	11
Blackhoof	S68MN-9-3	Humaquept	13
Brainerd	S54MN-18-32B	Fragichrept $\frac{3}{4}$	53*
Brainerd taxadjunct	S54MN-18-33A	Fragiboralf 4/	11*
Canisteo	S54MN-81-113A	Haplaquol1 5/	67*
Canisteo	S54MN-81-113A S54MN-81-113HB	Haplaquoll 3	73*
Cathro	S7 2MN-35-4	Borosaprist	15
Cathro	S72MN-60-1	Borosaprist	17
Cloquet	S68MN-9-6	Dystrochrept,,	19
Cordova	S54MN-81-113HA	Argiaquoll 7/	71*
Cordova	S69MN-7-11	Argiaquol1	21
Cromwell	\$68MN-9-7	Dystrochrept	23
Dakota taxadjunct Duluth	\$70MN-24-2 \$68MN-9-4	Argiudoll Eutroboralf	25 27
Dulucu	200MN-3-4	Entropolati	21
Erin	S60MN-66-2	Hapludalf	17*
Erin taxadjunct	S60MN-66-1 8/	Hapludalf	15*
_			
Fayette	MN-SCD-4 (7-13)	Hapludalf	19*
Fayette	Z-1-2-8(75-89)	Hapludalf	23*
Fayette	Z-1-2-8(60-74) S54MN-18-33B 9/	Hapludalf	25* 13*
Flak taxadjunct (Brainerd)** Flak taxadjunct	554MN-18-33B <u>9</u> / 554MN-18-34A <u>10</u> /	Fragiboralf	29*
Flaming	S67MN-54-4	Fragiboralf Haploboroll	29
Formdale	\$57MN-75-1	Haploboroll	31
Formdale	S57MN-75-2	Haploboroll	33
Guckeen	S69MN-7-2	Hapludoll	35
Hayden	\$60MN-86-1	Hapludalf	31*
Hayden taxadjunct	S60MN-86-2 11/	Hapludalf	33*
Hattie	S61MN-75-1 12/	Haploborol1	63*
Hattie	$861MN-75-2\frac{12}{}$	Haploborol1	65*
Hibbing	\$64MN-69-2	Eutroboralf	37
Hibbing taxadjunct	S64MN-69-1	Glossoboralf	39
Hiwood	S61MN-39-1	Udiosamment	35*
Hiwood	S61MN-39-2	Udipsamment	37*
Kasson	S70MN-20-2	Hapludalf	41
Loxley	S72MN-31-1	Borosaprist	43
Lupton	57 2MN-31-2	Borosaprist	45
Lupton taxadjunct	S72MN-36-1	Borosaprist	47
Lura	S69MN-7-7	Haplaquoll	49
Madelia	S69MN-7-10	Haplaquol1	51
Markey	572MN-35-2	Borosaprist	53
Markey	S72MN-35-3	Borosaprist	55
Marna	S69MN-7-1	Haplaquoll	57
Maxcreek taxadjunct	S70MN-24-1	Haplaquol1	59
Menahga	S61MN-80-1	Udipsamment	47*
Menahga	S61MN-80-2	Udipsamment	49*
Milaca	S63MN-5-3	Fragiochrept	61
Milaca	S63MN-48-1	Fragiochrept	63
Minnetonka	S69MN-7-12	Argiaquoll	65
Mooselake	S72MN-36-3	Borohemist	67
Mora	\$63MN-5-1	Fragiboralf	69
Mora	\$63MN-5-2	Fragiboralf	71
Mora taxadjunct	S63MN-5-4	Fragiboralf	73
Mora taxadjunct	S68MN-9-1	Fragiboralf	75

	Soil Survey		
Series	No. 1/	Classification	Page
Nokay taxadjunct	S54MN-18-32A 13/	Fragiboralf	51*
Nymore	s60MN-86-3 <u>14</u> /	Udipsamment	39*
Omega	S68MN-9-5	Udipsamment	77
Omega	\$68MN-9-8	Udipsamment	79
Racine taxadjunct	\$70MN-20-1	Eutrochrept	81
Rifle	s73MN-69-1	Borohemist	83
Rockwell	S67MN-84-3	Calciaquol1	85
Ronneby	S63MN-5-5	Fragiaqualf	87
Sargeant taxadjunct	S70MN-50-1	Glossaqualf	89
Sartel1	\$60MN-71-2 15/	Udipsaument	55*
Sartell	S60MN-71-3 15/	Udipsamment	57*
Sartel1	$860MN-71-1 \frac{16}{100}$	Udipsamment	77*
Sartel1	S60MN-71-4 16/	Udipsamment	79*
<u> </u>	<u> </u>	War Ludal #	ウ1 ★

- 1/ County numbers (the number following "MN" in the Soil Survey No.) are as follows:
 - 5. Benton
 7. Blue Earth
 9. Carlton
 18. Crow Wing
 20. Dodge
 23. Fillmore
 - 20. Dodge
 23. Fillmore
 24. Freeborn
 28. Houston
 30. Isanti
 31. Itaska
 35. Kittson
 36. Koochiching
 39. Lake of the Woods
- 48. Mille Lacs
- 50. Mower 54. Norman 60. Polk
- 66. Rice 69. St. Louis 71. Sherburne
- 75. Stevens 80. Wadena
- 81. Waseca 84. Wilkin
- 85. Winona 86. Wright
- 2/ This pedon is a taxadjunct to the Anoka series because the base saturation in the argillic horizon is too high and the B2 horizon is too thin for the series range.
- 3/ This pedon, now placed in the Brainerd series, is an Aquic Fragiochrept; coarse-loamy, mixed, frigid. The Nokay series is classified Aeric Fragiaqualf; coarse-loamy, mixed, frigid.

4/ This medon is a taxed unct because it lacks low chroma mottles in the

Brainerd series.

- 5/ This pedon is changed to the Canisteo series from Webster because it is calcareous in the control section.
- 6/ This pedon is changed to the Canisteo series from Webster because it is calcareous in the control section.
- 7/ This pedon is changed to the Cordova series from Webster because it has an argillic horizon.
- 8/ This pedon is a taxadjunct because it has less clay in the argillic horizon and less albic material in the Bl horizon than that required for the Erin series.
- 9/ This pedon is a taxadjunct because it has a B/A clay ratio which is too high for the Flak series. This pedon is not part of the Brainerd series (Aquic Fragiochrepts) because it is a Typic Fragiboralf.
- 10/ This pedon is a taxadjunct because it has a B/A clay ratio which is too high and has too much clay in the B2 horizon for the Flak series.
- 11/ This pedon is a taxadjunct to the Hayden series because there is interfingering of albic material into the argillic horizon.
- 12/ This pedon is included with the Hattie series; Synnes has never been correlated as a series name.
- 13/ This pedon is a taxadjunct because it has chroma in the lower part of the A and upper part of the B horizons that is too high for the Nokay series.
- $\underline{14}/$ This pedon, now placed in the Nymore series, is a Typic Udipsamment. The Hubbard series is classified Udorthentic Haploborall; sandy, mixed.
- 15/ This pedon is changed to the Sartell series from the Nymore because the dominant sand size particles in the control section are finer than those found in the Nymore series.
- 16/ This pedon, now placed in the Sartell series, is a Typic Udpsamment.

- 19/ This pedon is not placed in a named series because it is a Mollic Ochraqualf; fine, montmorillonitic, mesic. The Lerdal series is classified Udollic Ochraqualf; fine, montmorillonitic, mesic.
- 20/ This pedon is not placed in a named series because it is an Aquollic Hapludalf; fine, montmorillonitic, mesic. The Lerdal series is classified Udollic Ochraqualf; fine, montmorillonitic, mesic.
- 21/ This pedon is not placed in a named series; it is a Typic Udipsamment; mixed, frigid. Swatara has never been correlated as a series name.
- 22/ This pedon is not placed in a named series because it is a Typic Haplaquept; fine, montmorillonitic, nonacid, frigid. The Wildwood series is classified Histic Humaquept; very-fine, montmorillonitic, nonacid, frigid.

76

73

72

SOIL NO- - - - - -

COUNTY - - -

GENERAL METHODS- - -

58 59

40

61

62

63

64

٤.

* AMPLE NOS .-

.05 .002 .002 1 .5 .25 .10 .05 .02 .002 .002 .2-1 .02. CLAY IN . PCT CLAY Size class and particle diameter (am)
Sand Silt Ratio Fine Very fine amily Inter Non-Ratio Int. Depth (in.) Horizon fine arbon 15texture clay DETEC Medium Fine III national 2-0.05) 10.05 40'00E 4000ge) 1-0.5) (0.5-0.25) sand clay ate clay bar to (0.25-0.1) (0.1-(0.09 (0.02-(0.005 0.002 to 0.05 (2-0.) clay pct COLUMN 2 10 11 12 13 17 16 18 10 PARTICLE SIZE ANALYSIS, NH, 38, 381, 3821; BULK DENSITY
VOL. (- - - - - WEIGHT - - - - -) 4A1D 4A1H 4D1
GT GT 75-20 20-5 5-2 LT 20-2 1/3- OVEN COLE
2 75 074 PCT BAR ORY
PCT PCT (- - - PCT LT 75 - - -) LT20 G/CC G/CC BULK DENSITY DEPTH 1 (- - - - WATER CONTENT- - - -1 CARBONATE (- -PH - -) 481C 482 1/3- 15-4BIC 4C1 6E1B 3ALA BCLA BCIE 1/10 WRD LT 2 LŦ 1/1 CH/ BAR **BAR** Ħ PÇT PCT Size class and particle diameter (mm) Bulk density Water Carbonate as CaCOs 1/3-to 15-bar 1/20-1/3~ 15-Depth (in.) ume > 2 **4**0.074 dry COLE bar ber < 2mm 100.002 > 75 75-20 (1:1)(1.2) 5-2 200 pet cm/cm (in./in. 100 CaCle H₂O pet pet COLUMN . 21 35 36 20 22 22 25 26 27 28 29 30 31 32 33 ICAT EXCH) RATIO RATIO DEPTH LORGANIC MATTER) IRON PHOS (- -EXTRACTABLE BASES 584A- -) CA 5F (BASE SAT) 5C3 5C1 6ALA ORGN 6814 6C2A EXT 651A 6N2E 602D MG 6P2A 6Q2A 6HIA 6G10 543A EXTB SAAA 801 803 KCL SUM NHAC SAT EX18 NHAC ÇA NITG TOTL K BACL EXTB TO NHAC ACTY CARB ACTY TΩ ŤŃ PCT PĊT PCT Gase saturation Organic matter Cat.exch.cap Extractable bases 5B Ca KC1 Ratio Sun Ext. Sum of Ratio Extract-MH4OAc Mitro Depth Organic Ext. Total satuacidity ext. bases Ca NH OAC c/M phoru phoru x able iron gen to ration CEC able A1 plus As Pe acidity clay acidlév Met NHi_LOAc 4161 pct pet pet pet pet pet pet meg/100g COLUMN 55 57 50 41 52 53 54 39 40 SALT 8D5 DEPTH (SATURATED PASTE) MA NA EYP 4FL 4F2 LOID PLST SDZ 5 E 8E1 8C1B CL \$04 H20 ESP SAR TOTL E¢ CA MG LMIT INDX MMHOS/ OHM SOLU 1 - - - - - - - - MEQ / LITER - - - - - -PCT PCT PCT CM I Saturated Desta Saturation extract Atterberg Depth (in.) Nes1s-Exch. Bod 1 va Total Water Plastic Liquid Electivity рĦ at alle TP solubl limit. index trical tion sat. salt HCO₃ C1 1003 804 onduc. Ca Mg ĸ co₃ ratio tivity pct pct Pet seq/11tex COLUMN

67

69

70

71

65

COLUMN HEADINGS FOR COMPUTER PRINTED DATA SHEETS

```
Depth in centimeters
 2
            Horizon
            Columns 3 through 16 display numbers which are percents of the total weight of particles 2
           millimeters or less in size.
            Total sand (particles range from .05 to 2 millimeters)
 34
            Total silt (particles range from .002 to .05 millimeter)
 5
6
            Total clay (particles are smaller than .002 millimeter)
            Total fine clay (particles are smaller than .0002 millimeter)
 7
8
            Very coarse sand (particles range from 1 to 2 millimeters)
           Coarse sand (particles range from 0.5 to 1 millimeter)
Medium sand (particles range from 0.25 to 0.5 millimeter)
10
            Fine sand (particles range from 0.1 to 0.25 millimeter)
            Very fine sand (particles range from .05 to 0.1 millimeter)
           Coarse silt (particles range from .02 to .05 millimeter)
13
           Fine silt (particles range from .002 to .02 millimeter; these limits also define the range of total
            silt on the International Soil Science Society Scale.)
            Very fine silt (particles range from .002 to .005 millimeter)
15
           Family texture sand (particles range from 0.1 to 2 millimeters)
16
            International II (particles range from .02 to 0.2 millimeter; these limits define the range of the
           fine sand on the International Soil Science Society Scale.)
           Fine clay to clay (this is the ratio of fine clay to total clay expressed as percent.)
Noncarbonate clay (this is the percentage of total clay, column 5, minus the percentage of
18
           carbonate clay, column 36.)
           Ratio of 15-bar water percentage to total clay percentage
19
20
           Volume of material greater than 2 millimeters given as a percent of total (sample volume)
21
           Greater than 75 millimeter material given as a percent of total sample weight
           Particle size range from 20 to 75 millimeters given as a weight percent of all material 75
           millimeters or less in the sample
           Particle size range from 5 to 20 millimeters given as a weight percent of all material 75
           millimeters or less in the sample
οh
           Particle size range from 2 to 5 millimeters given as a weight percent of all material 75
           millimeters or less in the sample
25
           Particle size range less than 0.74 millimeter given as a weight percent of all material 75
           millimeters or less
26
           Particle size range from 2 to 20 millimeters given as a weight percent of all material 20
           millimeters or less
           Bulk density of soil desorbed to 1/3-bar given in grams per cubic centimeter
28
           Bulk density of oven dry soil given in grams per cubic centimeter
29
30
31
32
33
34
           Coefficient of linear extensibility
           Water content of soil desorbed to 1/10-bar given as a percent of oven dry weight
           Water content of soil described to 1/3-bar given as a percent of oven dry weight
           Water content of soil fragments described to 15 bars given as a percent of oven dry weight
           Water retention difference given in centimeter per centimeter
           Column used for any water content measurement different from those given in columns 30
           through 33
35
36
37
38
39
41
42
           Carbonate content of the material 2 millimeters or less given as a percent
           Carbonate content of the material .002 millimeter or less given as a percent
           pH of a 1:1 suspension of soil in distilled water
           pH of a 1:2 suspension of soil in .01 M CaClo
           Organic carbon given as a percent
           Nitrogen given as a percent
           Organic carbon to nitrogen ratio
           Extractable iron given as a percent
43
44
45
           Total phosphorus given as a percent
           Extractable calcium given in milliequivalents per 100 grams of soil
           Extractable magnesium given in milliequivalents per 100 grams of soil
           Extractable sodium given in milliequivalents per 100 grams of soil
47
           Extractable potassium given in milliequivalents per 100 grams of soil
ЪÀ
           Sum of the extractable bases given in milliaguisusents per 100 grams of soil
```

```
Acidity - barium chloride with triethanolamine measurement - given in milliequivalents per
49
          100 grams of soil
           Aluminum - potassium chloride extraction - given in milliequivalents per 100 grams of soil
50
51
          Cation exchange capacity by sum of the extractable bases plus the acidity given in milliequivalents
          per 100 grams of soil
52
           Cation exchange capacity as measured by ammonium acetate given in milliequivalents per 100 grams
          of soil
          Ratio of ammonium acetate cation exchange capacity to total clay
          Ratio of extractable calcium to extractable magnesium
55
56
          Calcium saturation of the ammonium acetate cation exchange capacity given as a percent
          Base saturation - sum of the extractable bases divided by the acidity plus the sum of the
          extractable bases - given as a percent
```

Column	
- 57	Base saturation - sum of the extractable bases divided by the ammonium acetate cation
-0	exchange capacity - given as a percent
58 50	Saturated paste (soil plus water) resistivity given in ohm-cm Saturated paste (soil plus water) pH
59 60	Saturated paste (soil plus water) water content given as a percent
6ì	Exchangeable sodium percentage
62	Sodium adsorption ratio
63	Total soluble salt given in parts per million
64	Gypsum given in percent
65	Electrical conductivity of the saturation extract given in mmhos per centimeter Calcium content of the saturation extract given in milliequivalents per liter
67	Magnesium content of the saturation extract given in milliequivalents per liter
61 62 63 64 65 66 67 68	Sodium content of the saturation extract given in milliequivalents per liter
٢٠	Produced and add the administration of administration of the second of t
. 42	
<u> </u>	to to
	· · · · · · · · · · · · · · · · · · ·
7	
) <u></u>	
1	
	† _{**}
£	
72	
£. <u>3.</u>	
ं दे ± ,	
· , –	
· ·	
7 Table 100	7 14
The state of the s	å 17.
·-	
-	
!	
<u>, T</u>	
"	
1	
<u>k</u> 1-	
<u>Y</u>	
7-	
11	
# #11 x	
- (
<u> </u>	
_	
T	
-	
I.	
	k ,
-	

SOIL CLASSIFICATION-TYPIC FRAGIBORALF U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA CCARSE-LCAMY, MIXEC, FRIGID
SERIES - - - - AMMERI TAXADJUNCT SOIL NO - - - - - \$68MN-9-2 COUNTY - - - CARLTON GENERAL METHCCS- - - 14.1818.241.28 SAMPLE NOS. 68L1193-66L1201 PERRUARY 1977 - - DRATIO FINE (- - CLAY VCOS -40A -600 SAND -- - -) FAML INTR FINE SANC SILT CORS VFSI CLAY CLAY MEDS TEXT .2-CLAY 2-.05-Ž-1-•5 .5-.005-SAND CLAY BAR .05 .002 -005 *C005 - - -- PCT LT 2MM PCT CM - - -- - -PCT CLAY CCC-5 #1 #2 41.8 50.1 52.1 50.3 8.1 .9 2.2 2.7 4.0 4.5 4.4 8.3 7.2 7.5 18.0 16.7 17.1 10.7 26.C 24.1 25.3 22.3 31.1 46.1 1.30 CC5-8 41.1 43.2 6.8 26.0 28.0 3C.6 31.7 45.9 .66 ez 1H IR 48.5 47.4 3.1 8.0 9.1 C13-23 C23-41 022HIR 023HIR 46.0 6.6 4.6 16.8 13.5 25.5 21.8 32.4 47.9 . 54 041-66 37.8 _22.2 12.2 18.4 42.6 Į IJ ıД CEPTH -WATER CONTENT-- - -) CARBONATE (- -PH - -) 481C 482 ALAE BCIA BCIE 1/3-BAR 15-LT 2 WRD LT 1/1 1/2 8AR -COZ CACL H20 PCT PCT (- - - PCT LT 75 - - -) LT20 G/CC G/CC PCT PCT Č۲ PCT 5.1 4.8 4.4 COC-5 C 0 IR 10.6 TR C05-8 62 6C 57 53 5.6 4.7 5.0 4.3 CO8-13 C Č13-23 1.36 1.39 .007 TR 5 5 5 6 15 10 1.49 1.83 1.87 1.50 1.85 1.94 -2C -15 -14 .002 2.9 (23-41 17.2 0000

12.6

5.3

.15

1.92

.012

4.6 5.2 5.7 5.9

5.6

6.5

45 45 50

40

7

1.85

TR

C41-66 C66-91

10

ič

10

Pedon classification: Typic Fragiboralf; course-lossy, mixed, frigid. Series classification: Typic Fragiochrepts; course-lossy, mixed, frigid. Scall: Ahmeek texadjunct. Scall: Ahmeek texadjunct. Scall: No.: 568 Mn-9-2. Scal No.: Sca NN-9-2.
Location: Carlton County, Minnesota; NMA/h, HEI/h, SMI/h, Sec. 3h, T. h9 N., R. 20 W.; 1,050 feet west and 180 feet south of the center of the section. About 92 deg. 52 min. west longitude and h6 deg. h1 min. north latitude.

Climate: Hamid continental. Some characteristics of temperature in deg. F. are: summal normal - h0, winter normal - 12. summer normal - 65: some characteristics of preciditation in inches are mann i .__ 7) - 1 - 1 · -**5**/≡ The same of the sa

> with local relief of mostly 20 to 30 feet. with local relief or mostly 20 to 50 rest.
>
> Landscape setting: Site has a 3 percent convex southeast facing slope near the crest of a knoll.
>
> Local relief in the immediate vicinity of the site is about 10 feet and this site is on the higher part of the terrain. Soils of the Mora series, organic soils, and soils of this series are dominant in the immediate vicinity. Elevation is about 1,320 feet.
>
> Vegetation: Decideous-conferous forest with mostly paper hirch and maples with some small balance first understony is chiefly hasel with some jumeborries. fir; understory is chiafly hasel with some juneberries.
>
> Drainage: Well drained.
>
> Erosion: None.
>
> Moisture: Moist to about 90 cm, below that only slightly moist.
>
> Ground water: Desper than 185 cm.
>
> Remeability: Moisrate in upper part and moderately slow in lower part.
>
> Described by: R. Lewis and H. R. Finney on October 7, 1968.
>
> Sampled by: L. Shields, G. Holmgren, R. Rust, and P. Ryberg on October 7, 1968. 1 to 0 cm (1/2 to 0 inches). A mixture of decomposed and partly decomposed plant

O Baterial.

SERIES		FION-TYPIC COAR: ARVE: S67M	SCN TA	NULDAX	L ER SANI CT COUNTY				AL, FŘ	IGID			N	ATIONA!	EPARTME NSERVA L SCIL NEBR	SURVEY	AGRICI RVICE, LABOR	HTSC RATORY
- '																		
GENERAL	METHOCS-	<u>_</u> _1A. Li	B18.2A	1,28			SAMP	LE NOS.	6745	56-67L	564		I	EBRUARY	1977			
DEPTH	H08170							LE SIZE	- ANAI	VSIS-	. T 2×1	/- 3Al-	3414.	431B -			~	DATIO
		SAND 2- 			FINE	(SAND -)(-SILT-		FAML	INTR	FINE	NON-	8C1
		S AND	51LT	CLAY	CLAY	VCOS	CORS	MEDS	FNES	VFN5	-05	FNSI	-005	TEXT SAND	11	CLAY	CO3-	15- BAR
		.05	.002	002	.0002	? ī	. 5	.25	. ĩó	.05	.02	.002	.005	21	<u>.02</u>	TELAY		TO
CM)		 				PEI	L T 21	4M				,- <u>.</u>		PCT	PCT	CLAY
COC-15	A11	23.3 41.6 51.0 79.7 85.8 94.4	37.0	39.7		.5	2.0	3.2	11.0	6.6	11.6	25.4 19.9 17.8		16.7	25.1		21	.75
C15-25 C25-36	A1Z A3CA	41.6	25.2	33.2		1.1	3.4	5.8 7.0	24.1	7.2	5.3	19.9		34.4	27.7		10	.45
036-64	CIGCA	79.7	10.8	9.5		2.2	4.8	8.8	46.6	17.4	4.1	17.8		62.3	33.3 52.4 55.0		- 6	-34
064-74	CZGCA	85.8	7.9	6.3		-1	2.9	10.9			3.6	4.3 2.3		68.8	55.0		6_	41
074-97 (97-114	C3G C4G	94.4	3.7	1.9		-0	1.4		68.6								-	
114-147	C 5 G	93.9	3.2	2.9		. 9	1.6	2.4	75.6	13.3	2.0	1.2		8C.3	77.3	'	3	
147-173	∵ cee																	
*																		
DEPTH	(PARTICLE	SIZE ANA	ALYSIS	, FM,	3B, 3B1	, 362) (BUI	LK DENS	HTY I	(·	WAT	ER CON	ITENT-	1	CARBO	NATE.	(PH	T
	GT G	75-20 ; ;T (20-5	5-2	LT	20-2	1/3-	OVEN	COLE	1/10	- 1/3-	15-	WRD	-	- E		-171^-	1/2
	. 2 7!	, , ,			.C74	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	-002	HZO	CACL
CP	PCT PC	T (- PÇT Î	LT 75	1	LT20	G/CC	G/CC		PCT	PCT	PCT	CM		PCT	PCT		
000-15	TR	0 0	0	18	8C	TR	.57	.86	-150		103-0	29.7	.42		37	19	7.8	
C15-25	ŤŘ	ŏŏ	ŏ	TR	éč	TR	-60	.87	.130		97.2	15.0	.49	•	44	23	7.9	-
C25-36	TR	c o	, c	TR	52	ŤR	1.28	1.33	.013		23.2	9.5	.18		39	18	8.0	
C56+64	TD .	c ó	1 1 1	TR	18	TR	1-624	1.64		11.8		2.6	:		12	TR	8.2	
C74-97	TŘ	č č	ō	TR	-5	ŤŘ	1.708					.5			ā	TR	8.4	
C97-114	TR	0 0	TR	TR		TR	1.68A	1.68		11.6		1-1	-18		13		8.2	
		: :			_													
114-147 147-173	TR TR	0 0	TR	TR Tr	9	TR TR						1.3			- 1	TR	8.2	
114-147	TR TR	T (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TR C	TR TR	9	TR TR						.4			- 6	TR.	8.2	
																		SAT)
DEPTH (ORGANIC M 6A1A 6E ORGN NI	IATTER) 11A C/N	IRON 6C2A EXT	PHOS 651A Totl	(E) 6N2E CA	TRACT 604C MG	ABLE BA	4SES 58 6Q2A K	54A1	ACTY 6H1A BACL	AL 6G10 KCL	(CAT SASA EXTB	EXCH) 5A6Ā NHAC	RATIO BD2 NHAC	RATIO 8D3 CA	CA SF SAT	(BASE SC3 EXTB	SAT) SC1 NHAC
DEPTH (ORGANIC M 6A1A 6E ORGN NI	IATTER) 11A C/N	IRON 6C2A EXT	PHOS 651A Totl	(E) 6N2E CA	TRACT 604C MG	ABLE BA	4SES 58 6Q2A K	54A1	ACTY 6H1A BACL	AL 6G10 KCL	(CAT SASA EXTB	EXCH) 5A6Ā NHAC	RATIO BD2 NHAC	RATIO 8D3 CA	CA SF SAT	(BASE SC3 EXTB	SAT) SC1 NHAC
DEPTH (ORGANIC M 6A1A 6E ORGN NI CARB PCT PC	ATTER) Bla c/N ITG	IRON 6C2A EXT FE PCT	PHOS 651A Totl Pct	(E) 6N2E CA	TRACT 604C MG	ABLE BA	ASES 58 6Q2A K	54A1	ACTY 6H1A BACL	AL 6G10 KCL	(CAT SASA EXTB	EXCH) 5A6A NHAC	RATIO BD2 NHAC TG CLAY	RATIO 8D3 CA	CA SF SAT	(BASE SC3 EXTB	SAT) SC1 NHAC
DEPTH (ORGANIC M 6A1A 6E ORGN NI CARB PCT PC	ATTER) Bla c/N ITG	IRON 6C2A EXT FE PCT	PHOS 651A Totl Pct	(E) 6N2E CA	604C MG	ABLE BA	ASES 58 602A K	54A1	ACTY 6H1A BACL TEA) G-	AL 6G10 KCL EXT	(CAT SASA EXTB ACTY	EXCH) 5A6Ā NHAC	RATIO BD2 NHAC TG CLAY	RATIO 8D3 CA	CA SF SAT	(BASE SC3 EXTB	SAT) SC1 NHAC
DEPTH (ORGANIC M 6A1A 6E ORGN NI CARB PCT PC	ATTER) Bla c/N ITG	IRON 6C2A EXT FE PCT	PHOS 651A Totl Pct	(E) 6N2E CA	TRACT 604C MG	ABLE BA	ASES 58 602A K MEG	54A1	ACTY 6H1A BACL TEA) G-	AL 6G10 KCL	(CAT SASA EXTB ACTY	EXCH) 5A6Ā NHAC	RATIO 8D2 NHAC TG CLAY 1.97	RATIO 8D3 CA	CA SF SAT	(BASE SC3 EXTB	SAT) SC1 NHAC
CP -15 C15-25 C25-36 C36-64	ORGANIC M 6A1A 6E ORGA NI CARB PCT PC 11.7C 1. 5.49 1.94	ATTER) Bla c/N ITG	IRON 6C2A EXT FE PCT	PHOS 651A Totl Pct	(E) 6N2E CA	17.9	ABLE BA	ASES 58 602A K MEG	54A1	ACTY 6H1A BACL TEA) G-	AL 6G10 KCL EXT	(CAT SASA EXTB ACTY	EXCH) 5A6A NHAC 	RATIO BD2 NHAC TC CLAY 1.97 1.94	RATIO 8D3 CA	CA SF SAT	(BASE SC3 EXTB	SAT) SC1 NHAC
CP CQC-15 C15-25 C36-64 C64-74	ORGANIC M 6A1A 66 ORGN NI CARB PCT PC 11.7C 1 5.45 1.94	ATTER) 31A C/N 17G .T	IRON 6C2A EXT FE PCT	PHOS 651A Totl Pct	(E) 6N2E CA	17.9 5.4 2.6	ABLE BA 6P2A NA 	MEG	54A1	ACTY 6H1A BACL TEA) G-	AL 6G10 KCL EXT	(CAT SASA EXTB ACTY	EXCH) 5A6Ā NHAC 	RATIO 8D2 NHAC TO CLAY 1.97 1.94 .98	RATIO 6D3 CA TC MG	GA SF SAT NHAC PCT	(BASE SC3 EXTB	SAT) SC1 NHAC
CP -15 C15-25 C25-36 C36-64	ORGANIC M 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.22 .23 .C4	ATTER) Bla c/N ITG	IRON 6C2A EXT FE PCT	PHOS 651A Totl Pct	(E) 6N2E CA	17.9 17.9 17.9 17.9	ABLE BA	MEG MEG MEG - 1	54A1	ACTY 6H1A BACL TEA) G-	AL 6G10 KCL EXT	(CAT SASA EXTB ACTY	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1	RATIO 8D2 NHAC TO CLAY 1.97 1.94 .98	RATIO 6D3 CA TC MG	CA SF SAT	(BASE SC3 EXTB	SAT) SC1 NHAC
CP CQC-15 CQC-15 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114	ORGANIC N 6A1A 66 ORGN NI CARB PCT PC 11.7C 1 5.45 1.94 .22 .23 .C4 .C7	ATTER) Bla c/N ITG	IRON 6C2A EXT FE PCT	PHOS 651A Totl Pct	(E) 6N2E CA	17.9 5.4 2.6 1.4	ABLE B/6P2A NA	MEG MEG - 1 - 1 - 2	54A1	ACTY 6H1A BACL TEA) G-	AL 6G10 KCL EXT	(CAT SASA EXTB ACTY	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4	RATIO 8D2 NHAC TO CLAY 1.97 1.94 .98	RATIO 6D3 CA TC MG	GA SF SAT NHAC PCT	(BASE SC3 EXTB	SAT) SC1 NHAC
CP CQC-15 CQC-15 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114	ORGANIC N 6A1A 66 ORGN NI CARB PCT PC 11.7C 1 5.45 1.94 .22 .23 .C4 .C7	ATTER) Bla c/N ITG	IRON 6C2A EXT FE PCT	PHOS 651A Totl Pct	(E) 6N2E CA	17.9 17.9 17.9 17.9	ABLE B/6P2A NA	MEG MEG - 1 - 1 - 2	54A1	ACTY 6H1A BACL TEA) G-	AL 6G10 KCL EXT	(CAT SASA EXTB ACTY	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1	RATIO 8D2 NHAC TO CLAY 1.97 1.94 .98	RATIO 6D3 CA TC MG	GA SF SAT NHAC PCT	(BASE SC3 EXTB	SAT) SC1 NHAC
CP CQC-15 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173	ORGANIC M 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.94 .22 .23 .C4 .C7 .C7	ATTER 3 31A C/N 1TG C/N .T .T .C08 11 .530 10 .108 10 .C20 11	IRON 6C2A EXT FE PCT	PHOS 6S1A TOTL PCT	(E) 6N2E CA (17.9 604C MG 17.9 5.4 2.6 1.4	ABLE BA 6P2A NA 	MEG MEG 1 - 1 - 1	SUM EXTB) / 100	ACTY 6H1A BACL TEA) G-	AL 6GL KCL EXT	ICAT SASA EXTO ACTY	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4	RATIO 8D2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 6D3 CA TC MG	GA SF SAT NHAC PCT	(BASE 5C3 EXTB ACTY PCT	SAT) 5C1 NHAC PCT
CP CQC-15 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1 5.45 1.94 .22 .23 .C4 .C4 .C7	ATTER) BLA C/N ITG CT C88 11 530 10 198 10 C20 11	IRON 6C2A EXT FE PCT	PHOS 6S1A TOTL PCT	(E) 6N2E CA (17.9 504C MG 17.9 5.4 2.6 1.4	ABLE B/ 6P2A NA 	MEG MEG MEG MEG MEG 	SUM EXTB) / 100	ACTY 6H1A BACL TEA) G-	AL 6G1E KCL EXT	(CAT 5A3A EXTO ACTY	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2	RATIO 8D2 WHAC TG CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TC MG	CA SF SAT NHAC PCT	(BASE 5C3 EXTB ACTY PCT	SAT) 5C1 NHAC PCT
CP CQC-15 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1 5.45 1.94 .22 .23 .C4 .C7 .C7 (SATURATI 8E1 8C1 REST PI	ATTER) B1A C/N B1A	IRON 6C2A EXT FE PCT	PHOS 6S1A TOTL PCT	6E) 6N2E CA (SALT 8D5 TOTL	17.9 5.4 2.6 1.4 .5 .8 .5	ABLE BA 6P2A NA	MEG MEG 1 - 1 - 1 - 1 - 1 - 1 - 1	SUM EXTB) / 100	ACTY 6H1A BACL TEA) G-	AL 6G1E KCL EXT	(CAT 5A3A EXTO ACTY	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2	RATIO 8D2 WHAC TG CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TC MG	CA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LQ1D	SAT) SC1 NHAC PCT ERG 4F2 PLST
CP CQC-15 C15-25 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.94 .22 .23 .C4 .C4 .C7 (SATURATI 8E1 8C1 RESY P)	ATTER 3 BLA C/N ITG CT C088 11 530 10 198 10 C20 11	IRON 6C2A EXT FE PCT NA 502 ESP	PHOS 6S1A TOTL PCT	6EX 6N2E CA (17.9 5.4 2.6 1.4 .5 .6 GYP 6F1A	ABLE BA 6P2A NA 	ASES 588 6Q2A KMEC -4 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	SUM EXTS / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL EXT	EXTRACT	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2 8A1— 6J1A HCD3	RATIO BD2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TO MG	GA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LHIT	SAT) SC1 NHAC PCT ERG 4F2 PLST
CP CQC-15 C15-25 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.94 .22 .23 .C4 .C7 .C7 (SATURATI 8E1 8C1 REST PI	ATTER 3 31A C/N 1TG C/N 1T C08 11 530 10 108 10 108 10 109 11 109 109 11 109 11 100 1	IRON 6C2A EXT FE PCT NA 5D2 ESP	PHOS 6S1A TOTL PCT PCT	6E) 6N2E CA (SALT 805 TOTL PPM	17.9 5.4 2.6 1.4 .5 .5 GYP 6F1A	ABLE B. 6P2A NA4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	.4 .1 .1 .2 .1 .1 .1	SUM EXTS / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL EXT	(CAT 5A3A EXTO ACTY	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2 8A1— 6J1A HCD3	RATIO BD2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TO MG	GA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LHIT	SAT) SC1 NHAC PCT ERG 4F2 PLST
CP CQC-15 C15-25 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173 CEPTH CM COC-15	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.94 .22 .23 .C4 .C7 .C7 (SATURATI 8E1 8C1 REST PI	ATTER) B1A C/N ITG TT .088 11 .530 10 .188 10 .C20 11 D PASTE) B 8A H H20 PCT	IRON 6C2A EXT FE PCT NA 5D2 ESP	PHOS 6S1A TOTL PCT PCT	6E) 6N2E CA (5ALT 8D5 TOTL SOLL	17.9 5.4 2.6 1.4 .5 .5 GYP 6F1A	ABLE B. 6P2A NA4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	.4 .1 .1 .2 .1 .1 .1	SUM EXTS / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL EXT	EXTRACT	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2 8A1— 6J1A HCD3	RATIO BD2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TO MG	GA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LHIT	SAT) SC1 NHAC PCT ERG 4F2 PLST
CP CQC-15 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173 CEPTH CM CQC-15 C15-25	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.34 .22 .23 .C4 .C7 .C7 (SATURATI 8E1 8 PI OHM- CP E60	ATTER 3 31A C/N 1TG C/N 1TG 11 530 10 108 10 1020 11	IRON 6C2A EXT FE PCT NA 5D2 ESP	PHOS 6S1A TOTL PCT PCT	6E) 6N2E CA (SALT 805 TOTL PPM	17.9 604C MG 17.9 5.4 2.6 1.4 .5 .6 .5 GYP 6F1A	ABLE B. 6P2A NA4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	.4 .1 .1 .2 .1 .1 .1	SUM EXTS / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL EXT	EXTRACT	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2 8A1— 6J1A HCD3	RATIO BD2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TO MG	GA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LHIT	SAT) SC1 NHAC PCT ERG 4F2 PLST
CP CQC-15 C15-25 C25-36 C4-74 C74-97 C97-114 114-147 147-173 CEPTH CM CQC-15 C15-25 C25-36 C36-64	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.34 .22 .23 .C4 .C7 .C7 (SATURATI 8E1 8 PI OHM- CP E60	ATTER 3 31A C/N 1TG C/N 1T C08 11 530 10 108 10 108 10 109 11 109 109 11 109 11 100 1	IRON 6C2A EXT FE PCT NA 5D2 ESP	PHOS 6S1A TOTL PCT PCT	6E) 6N2E CA (SALT 8D5 TOTL SOLL PPH	17.9 604C MG 17.9 5.4 2.6 1.4 .5 .6 .5 GYP 6F1A	ABLE B. 6P2A NA	.4 .1 .1 .2 .1 .1 .1	SUM EXTS / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL EXT	EXTRACT	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2 8A1— 6J1A HCD3	RATIO BD2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TO MG	GA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LHIT	SAT) SC1 NHAC PCT ERG 4F2 PLST
CP CQC-15 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173 DEPTH CN CCC-15 C15-25 C25-36 C36-64	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.34 .22 .23 .C4 .C7 .C7 (SATURATI 8E1 8 PI OHM- CP E60	ATTER 3 31A C/N 1TG C/N 1TG 11 530 10 108 10 1020 11	IRON 6C2A EXT FE PCT NA 5D2 ESP	PHOS 6S1A TOTL PCT PCT	6E) 6N2E CA (SALT 8D5 TOTL SOLL PPH	17.9 604C MG 17.9 5.4 2.6 1.4 .5 .6 .5 GYP 6F1A	ABLE B. 6P2A NA	.4 .1 .1 .2 .1 .1 .1	SUM EXTS / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL EXT	EXTRACT	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2 8A1— 6J1A HCD3	RATIO BD2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TO MG	GA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LHIT	SAT) SC1 NHAC PCT ERG 4F2 PLST
CP CQC-15 C15-25 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173 CP CQC-15 C15-25 C15-25 C15-25 C16-4 C74-97	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.94 .C4 .C7 .C7 (SATURATI 8E1 8C1 8E1 8C1 CP E60 35C0	ATTER 3 31A C/N 1TG C/N 1TG 11 530 10 108 10 1020 11	IRON 6C2A EXT FE PCT NA 5D2 ESP	PHOS 6S1A TOTL PCT PCT	6E) 6N2E CA (SALT 8D5 TOTL SOLL PPH	17.9 604C MG 17.9 5.4 2.6 1.4 .5 .6 .5 GYP 6F1A	ABLE B. 6P2A NA	.4 .1 .1 .2 .1 .1 .1	SUM EXTS / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL EXT	EXTRACT	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2 8A1— 6J1A HCD3	RATIO BD2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TO MG	GA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LHIT	SAT) SC1 NHAC PCT ERG 4F2 PLST
CP CQC-15 C15-25 C25-36 C36-64 C64-74 C74-97 C97-114 114-147 147-173 DEPTH CN CCC-15 C15-25 C25-36 C36-64	ORGANIC N 6A1A 6E ORGN NI CARB PCT PC 11.7C 1. 5.45 1.94 .22 .23 .C4 .C7 .C7 (SATLRATI 8E1 8C1 REST PI OHM- CP E60 35C0	ATTER 3 31A C/N 1TG C/N 1TG 11 530 10 108 10 1020 11	IRON 6C2A EXT FE PCT NA 502 ESP	PHOS 6S1A TOTL PCT PCT	6E) 6N2E CA (SALT 8D5 TOTL SOLL PPH	17.9 604C MG 17.9 5.4 2.6 1.4 .5 .6 .5 GYP 6F1A	ABLE B. 6P2A NA	.4 .1 .1 .2 .1 .1 .1	SUM EXTS / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL EXT	EXTRACT	EXCH) 5A6Ā NHAC 41.3 19.4 8.8 3.1 1.4 2.1 1.2 8A1— 6J1A HCD3	RATIO BD2 NHAC TO CLAY 1.97 1.94 .98 .52	RATIO 8D3 CA TO MG	GA SF SAT NHAC PCT	IBASE 3C3 EXTB ACTY PCT ATTERB 4F1 LHIT	SAT) SC1 NHAC PCT ERG 4F2 PLST

⁽A) 1/10-BAR, METHOD 4A1G.
(B) ESTIMATEC.
(C) 18 KG CF CARBON PER SQ METER TO A DEPTH OF 1 METER, METHOD 6A.

Pedon classification: Typic Calciaquoll: coarse-loamy over sandy or sandy skeletal, frigid. Series classification: Typic Calciaquolls; coarse-loamy, frigid.

Series: Arveson taxadjunct.

Pedon No.: S67 MN-54-1.

Area: Norman County, Minnesota.

Location: SEINWISE sec. 27, T. 144 N., R. 45 W. (Lake Ida Twp.); about 150 feet west, southwest of a

clump of aspen at that location.

Some characteristics of temperature in degrees F. are: annual normal - 41, winter normal - 10, Climate: summer normal - 68; some characteristics of precipitation in inches are: mean annual - 20,

May to September - 14, mean snowfall - 35.

Vegetation: Narrow leaf sedge, prairie cordgrass, redtop, horsetails, and calamagrostis. Parent material: Calcareous, lacustrine, sandy sediments associated with glacial Lake Agassiz.

Physiography: Glacial Lake Agassiz plain; site occurs immediately west of the McCauleyville beach which is a part of the McCauleyville, Campbell, and Norcross beach-ridge complex.

Topography: Site occurs on about a 2 percent plain slope; it is about 200 yards west of a beach ridge which rises some 15 feet higher than the sampling site.

Drainage: Poorly to very poorly drained.

Ground water: At 54 inches.

Erosion: None.

Permeability: Moderate in upper part, rapid in lower part,

Moisture: Moist throughout.

Sampled by . R. H. Jardan. G. S. Halmgren. D. D. Rarran and H. R. Finney on October 16. 1967.

Described by: H. R. Pinney.

(0 to 6 inches). Black (N2) silt loam; moderate very fine granular structure; All 67L556 0 to 15 cm Very friable; roots abundant; strongly effervescent; clear smooth boundary.

Al2 67L557 15 to 25 cm (6 to 10 inches). Black (10YR 2/1) loam; weak very fine granular structure; very friable; strongly effervescent; clear wavy boundary.

A3ca 67L558 25 to 36 cm (10 to 14 inches). Very dark gray (10YR 3/1) loam; weak very fine subangular blocky structure and weak fine granular structure; very friable; roots plentiful; violently effervescent; about 10 percent inclusions of dark gray (10YR 4/1); abrupt broken boundary.

Clgca 67L559 36 to 64 cm (14 to 25 inches). Gray (2.5Y 5/1) light fine sandy loam; few fine distinct yellowish brown (10YR 5/8) mottles in lower 5 inches of horizon; weak coarse subangular blocky structure; very friable; roots plentiful; violently effervescent; about 5 percent nearly horizontal but discontinuous bands of light brownish gray (2.5Y 6/2), about 1 percent white soft segregations of lime about 2 to 5 mm in diameter: abrupt smooth boundary,

C2gca 671.560 64 to 74 cm (25 to 29 inches). Very dark gray (10YR 3/1) loamy fine sand; few fine faint olive brown (2.3Y 4/4) mottles; massive; very friable; roots few; violently effervescent; horizon averages about 3 inches in thickness and its top varies in depth from 25 to 27 inches; about 1 percent fine, soft dark reddish brown (5YR 3/4) concretions; abrupt smooth boundary.

67L561 74 to 97 cm (29 to 38 inches). Light brownish gray (2,5Y 6/2) fine sand; few fine distinct vellowish brown (10YR 5/6) mottles; massive in place breaking to single grain; very friable to loose; roots few; slightly effervescent; horizon varies from 4 to 10 inches in thickness; contains a few krotovina; the largest krotovina is about 6 cm across; clear wavy boundary.

67L562 97 to 114 cm (38 to 45 inches). Light brownish gray (2.5Y 6/2) fine sand; common medium distinct yellowish brown (10YR 5/6) mottles; massive breaking readily to single grain; loose; no roots; slightly effervescent; about 5 percent 1 to 10 mm in diameter soft black and dark grayish brown concretions; about 5 percent dark grayish brown (10YR 4/2) fine sandy loam lenses which are discontinuous and range to about 3 or 4 inches in width and 2 to 2 inch in thickness generally horizontal but some are vertical; clear wavy boundary.

67L563 114 to 147 cm (45 to 58 inches). Fine sand; about 50 percent yellowish brown (10YR 5/6) and about 30 percent light brownish gray (2.59 6/2) and light clive brown (2.59 5/4); common medium and coarse distinct gray (5Y 6/1) mottles, about 5 percent dark gray and very dark gray vertical atreaks; massive breaking readily to single grain; loose; no roots; slightly effervescent; clear broken boundary.

67L564 147 to 173 cm (58 to 68 inches). Light olive gray (5Y 6/2) fine sand; few fine faint light yellowish brown (2.5Y 6/4) mottles; massive breaking readily to single grain; loose; slightly effervescent; the color grades to gray (N6) in the lower part of the horizon; about 10 percent wedge-shaped black (10YR 2/1) inclusions.

Remarks: Colors are for moist soil. Samples were collected from a pit with dimensions of 3 x 10 x 6 feet in depth. This pedon was essentially free of coarse fragments throughout. Colors are for moist soil. Soil temperature at 20 inches was 7.5 degrees C and at 60 inches was 8.5 degrees C. This pedon is very close to the boundary of the sandy and the coarse-loamy over sandy or sandy skeletal family textural classes. Presently this pedon is outside the range of the Arveson series, but it would be considered as a taxadjunct of that series.

U. S. DEPARTMEN. OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLM, NEGRASKA

SQIL NO - - - - - \$67MN-54-2 COUNTY - - - NORMAN

GENERAL METHODS- - -14.1818.241.28

SAMPLE NOS. 674565-674576

FEBRUARY 1977

DEPTH	HCRIZON	•			FINE	(1)(SILT-)	FAML	INTR	FINE	NON-	801
		SAND			CLAY		CORS	MEDS		VFNS		FNSI	VFSI	TEXT	11	CLAY	CO3-	
		2-	.05-	.CO2	.CCC2	2-	1-	. 5-	.25-	.10-	.05	-02		SAND	.2-	to	CLAY	
CP		{						.25 PCT	.10 LT 2	+05 MM			-002	21)	CLAY PCT	PCT	CLAY
00-18	2 F	67.7	13.5	18.8		.2	.9	1.3	37.4	27.9	5.2	6.3		39.8	66.0		13	.5
18-30	A12CA	71.C	11.6	17.4		• Z	-8	1.3	43.2	25.5	5.Ç	6.6		45.5	68.9		8	. 4
3C-41	CIGCA	75.1	1C.3	14.6		. 2	.6	1.0	45.7	27.5	4.6	5.7		47.6	73.0		7	.4
41-48	Ç2GÇ A	85.5	7.5	7.0		- 4	. 6	1.0	48.8	34.7	4.2	3.3		50.8	82.7		5	.4
48-61	C 3 G	95.1	3.8	1.1		+6	.3	. 3	56.7	37.1	3.C	.8		58.0	95.C		i	
61-84	C4G																-	
84-109	CSG	95.4	4.2	.4		+1	• 1	- 1	38.7	56.4	3.3	.9		39.0	97.5			
09-132	CAG																	
32-155	C7G																	
55-173	CSC	95.5	3.3	1.2		TR	.1	. 3	10.3	84.5	2.9	.4		10.6	97.6			
30-46	CIGCA																	
46-56	CZGCA																	
EPTH (PARTICLE S	IZF ANA			 8- 381	. 382)	r Bu	K DENS							CARBO		(PI	
	VOL. 1							4A1H		481C	481C	AB2	4C1	,	6E1B	3ALA	BCIA	861
	GT GT	75-20			LŤ	20-Z		OVEN		1/10	1/3-	15-	WRD		LT	LT	1/1	1/2
	2 75						BAR	DRY		BAR	BAR	BAR	CM/		2'	+002	H20	CACI
ſ₩	Der Ner	1	967	J-26		1174					OFT.	RET	č.,				20	5401
		-																

COC-18	0	0	0	0	0	4 C	o	1.25	1.35	.026		33.1	10.7	.28		22	6	8.1	
016-30	TR	C	0	0	FR	36	TR	1.43	1.49	.014		26.6	8.5	.26		11	9	8.1	
030-41	TR	C	0	C	TR	32	TR	1.46	1.47	- CO2		16.9	5.8	.16		11	8	8.1	
C41-48	TR	C	0	C	TR	23	TR	1.624	1.62		14.1		2.8	-18		14	2	8.2	
C48-61	1	C	¢	1	1	13	2	1.608					.3			9	TR	8.3	
C61-84	TR	C	C	TR	TR		TR	1.614	1.55		15.5		.3	.24		8		8.2	
C84-1C	9 TR	C	0	TR	TR	17	TR	1.59A	1.58		13.7		. 3	.21		8	TR	8.2	
109-13	2 TR	C	0	0	TR		TR						. 3			ġ		8.1	
132-15	5 2	C	0	1	2		3						.5			12		8.3	
155-17	3 TR	Ō	ō	ō	TR	25	TR						. 3			16	TR	8.2	
030-46	TR	ā	ō	0	TR		TR						6.7			20	,.,	8.1	
C46-56		č	ō.	ā	TR		TR						3.2			13		8.2	
DEPTH	CORGANI			IRCN	PHOS				ASES 58	4A}		AL		EXCHI			CA	IBASE	
	6ALA	681A	C/N				604C		6924		6H1A	6G1D	5A3A		* 8D2	8D3	5F	5C 3	5C1
	CRGN	NITG		EXT	LOLF	CA	MG	NA	K	SUM	BACL	KCL	EXTB	NHAÇ	NHAÇ	ÇA	ŞAT	EXTB	NHA
	CARE			FE						EXTB	TEA	EXT	ACTY		TO	TO	NHAC	ACTY	
5M	P.C.T.	PÇŢ		PCT	PCT	(MEQ	/ 100	G				CLAY	MG	PCT	PCT	PCT
CCC-18	5.32¢						9.6	.2	.1					15.2	1-17				
C18-2C	4.12						4.0	-1	. i					8.5					
C3C-41	.84						1.8	-1	+ l					4.1	.59				
C41-48	.37						1.4	-1	-1					3.1	-62				
C48-61	.C7						.4	- 1	-1					1.2					
061-84	.C4																		
C84-10'																			
109-132																			
132-159	C4																		
	3 .Cl						. 4	.1	.1					1.3					
155-173																			
C3C-46								• •											

) TO

⁽A) 1/10-EAR, METHOD 441G.
(B) ESTIMATED.
(C) 21 MG OF CARBON PER SQ METER TO A CEPTH OF 1 METER, METHOD 6A.

Pedon classification: Typic Calciaquoll; coarse-loamy over sandy or sandy skeletal, frigid. Series classification: Typic Calciaquoll; coarse-loamy, frigid. Soil: Arveson taxadjunct!

Soil No.: S67MN-54-2.

Location: Norman County, Minnesota; NW 1/4, NW 1/4, SE 1/4, Sec. 28, T146N, R45W (Spring Creek Township). Vegetation: Pasture, mostly redtop and quackgrass.

Climate: Some characteristics of temperature in br. are: annual normal--41, winter normal--10, summer normal--68; some characteristics of precipitation in inches are: mean annual--20, May to September--14, mean snowfall--35.

Parent material: Calcareous, sandy lacustrine sediments associated with glacial Lake Agassiz.

Physiography: Glacial Lake Agassiz plain; site occurs immediately west of the McCauleyville beach.

Topography: Site occurs on about a 1/4 to 1/2 percent plain, west-fscing slope; it is about 180 m west of the beach ridge having Sioux and Renshaw soils. The beach ridge rises about 3 m above the sample site.

Drainage: Poorly to very poorly drained.

Ground water: At 137 cm.

Erosion: None.

Permeability: Moderate in upper part, rapid in lower part.

Moisture: Moist throughout,

Sampled by: R. H. Jordan, G. S. Holmgren, D. D. Barron and H. R. Finney on October 16, 1967.

Described by: H. R. Finney.

671,565 0 to 18 cm (0 to 7 inches). Black (10YR 2/1) loam grading to silty loam; moderate medium subangular blocky structure breaking to moderate fine granular structure; very friable; roots plentiful; strong effervescence; clear smooth boundary.

Al2ca 67L566 18 to 30 cm (7 to 12 inches). Black (10YR 2/1) loam; weak medium subangular blocky breaking readily to weak fine granular structure; very friable; roots plentiful; very strong effervescence; in places this horizon is missing; clear wavy to broken boundary.

Clgca 67L567 30 to 41 cm (12 to 16 inches). Dark gray (2.5Y 4/1) evenly mixed in a coarse pattern with gray (2.5Y 5/1) light fine sandy loam; few fine distinct olive brown (2.5Y 4/4) and few medium and coarse faint olive gray (5Y 5/2) mottles; weakly massive in places breaking readily to weak medium and coarse subangular blocky structure; very friable; few roots; very strong effervescence; clear smooth boundary.

C2gca 67L568 41 to 48 cm (16 to 19 inches). Dark grayish brown (2.5Y 4/2) loamy fine sand; few fine distinct olive brown to dark yellowish brown (2.5Y 4/4 to 10YR 4/4) and a few fine distinct dark brown (7.5YR 3/2) weakly massive in place breaking to weak medium and coarse subangular blocky; very friable; roots few; strong effervescence; abrupt smooth boundary.

c3g 67L569 48 to 61 cm (19 to 24 inches). Light gray (5Y 1/2) line sand; common measure translations and few fine distinct yellowish brown (10YR 5/6) mottles; weakly massive breaking readily to single grains; loose; and few fine distinct yellowish brown (10YR 5/6) mottles; weakly massive breaking readily to single grains; loose; 67L569 48 to 61 cm (19 to 24 inches). Light gray (5Y 7/2) fine sand; common medium faint light gray (2.5Y 7/2) roots few in the upper part, none in the lower part; in the center of the horizon is about a 1 cm thick strata of very fine gravel (a pebble band); about 1 percent black and dark reddish brown fine soft concretions; noncalcareous; clear wavy boundary.

C4g 67L570 61 to 84 cm (24 to 33 inches). Light brownish gray (2.5Y 6/2) about 55 percent in a coarse pattern with light gray (2.5Y 7/1) about 40 percent fine sand; common fine and medium distinct yellowish brown (10YR 5/6) mottles; weakly massive in place breaking readily to single grain; loose; no roots; noncalcareous; about 2 percent soft fine black concretions; gradual smooth boundary.

C5g 67L571 84 to 109 cm (33 to 43 inches). Light gray (2.5Y 7/2 and 5Y 7/1) fine sand; common coarse faint light brownish gray (2.5Y 6/2 to 5/2) mottles; massive breaking readily to single grains; loose; no roots; noncalcareous; gradual smooth boundary.

_67L572 109 to 132 cm (43 to 52 inches). Grayish brown (2.5Y 5/2) fine sand; many coarse faint gray (5Y 6/1) mottles; weakly massive in place breaking readily to single grains; loose; no roots; slight effervescence; abrupt

C7g 67L573 132 to 155 cm (52 to 61 inches). This horizon shows marked lamination or stratification; dominant colors are gray (57 6/1) and grayleh brown (2.57 5/2) in layers about 12 mm thick; fine sand; weakly massive in place breaking to single grain; loose; slight effervescence; no roots; horizon also has alternating strata about 3 mm thick of very dark grayish brown fine sand and about 6 mm thick layer of grayish brown heavy loamy fine sand; at the base of the horizon is about a 12 mm thick layer of yellowish brown coarse and very coarse sand with about 10 percent fine and very fine gravel; abrupt smooth boundary.

C8g 67L574 155 to 173 cm (61 to 68 inches). Light brownish gray (2.5Y 6/2) fine sand high in content of very fine sand; single grain; loose; slight effervescence; base color is separated by a thin layer of dark grayish brown (2.5YR 4/2 to 5/2) about 0.5 mm thick; base color occurs as layers about 0.5 to 1 cm in thickness.

Alternate samples

Clgca 67L575 30 to 46 cm (12 to 18 inches). Similar to Clgca at 30 to 41 cm.

C2ga 67L576 46 to 56 cm (18 to 22 inches). Similar to C2gca at 41 to 48 cm.

Remarks: Colors are for moist soil. Sample was obtained from a pit with dimensions of about 1 by 3 by 2 meters in depth. The degree of calcareousness varies horizontally in the pit, so alternate samples were taken at depths of 30 to 46 cm (67L575) and 46 to 56 cm (67L576). These horizons appear to be higher in content of lime. In parts of the pit where the Ca horizon darkens to a color of 2.5Y 4/2. Lamination or stratification are apparent in the lower two horizons, and the lower value colors in zones between the layers results from the higher concentration of dark colored minerals. This pedom represents the coarser textured segment of the series as well, as one with a weaker Ca horizon. Soil temperature at 50 cm was 9.5° C. and at 150 cm was 11.5° C.

SOIL CLASSIFICATION- GLOSSIC BUTROBORALF CCARSE-LCANY, MIXED SERIES - - - - - AUTOMBA SERIES

SOIL NC - - - - - 568MN-9-9

GENERAL METHCES- - -14.1818.241.28

COUNTY - - - CARLTON

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

PEBRUARY 1977

		SAND 2-	SILT	CLAY	FINE (- CLAY VC LT 2	OS COR	- SAND - S MEDS)(SILT-	3A1A, 3A18 > FAML VFSI TEXT .005- SAND	INTR II	FINE CLAY TO	NON- CD3- CLAY	RATIO 8D1 15- BAR
CM		.05 (.002	.co2	.acoz i	-	.25	-10	.05		.002	.002 21	.02	CLAY		TO
000-5	A1	36.6	53.1	10.3	1	.2 3.	9 8.8	15.0	7.6	24.8	28.3	29.0	39,4			1.13
205-13	021 FIR	38.1	52.5	9.4	1	.5 3.	7 8.3	16.9	7.7	26.5	26.0	30.4	42.6			.62
13-28	62.2HIR		48.2	6.8		.C 4.		18.4	8.6			36.1	44.3			.59
26-41	e31 .	68.5	28.3	3.2	3	-4 10 .		26.0	11.3		11.6	57.2	4C.C			.75
41-61	832	62.0	32.9	5.1		.0 7.		25.1	12.5		15.0	49.1	43.4			.33
61-69	PEA	55.6	31.8	12.5		.2 6.		22.2	12.C		15.2	43.6	40.2			.45
949-61	B21T	55.2	30.8	14.C	3	.0 6.	8 11.0	22.5	11.8	16.1	14.7	43.3	39.6			.46
81-102	B22T	51.5	32.3	16.2	2	•6 5•	4 10.1	21.4	12.1	16.6	15.7	39.4	39.7			.44
102-117	8 3 T	52.5	34.7	12.8	2	.2 5.	7 11.0	21.4	12.2	17.7	17.0	40.2	41.1			.43
117-152	c	54.7	36.3	9.0	3	.0 6.	3 10.9	21.7	12.8	18.5	17.8	41.9	42.8			.46
SEPTH (PARTICLE S	12F ANA	YS15.	 MM. 3	8. 381. 3	A21(R	ULK DENS				R CCI) CARBO	AATE		
	VOL. (481C		482	4C1	6E18	3A1 A	BC 1A	8C1É
	ĠŦ ĠŦ	75-20							1/10		15-	WAD	LT	LT	1/1	1/2
	2 75				.C74 PC				BAR	BAR	BAR	CP/		-002	H2C	CACL

SAMPLE NOS. 68L1211-68L1220

CCC-5 005-13 C13-28 C28-41 C41-61 C61-69 C69-81 C81-1C2 1C2-117	5 5 5	C C C C C	TR TR TR TR TR TR TR TR TR	2323556446	TR 3 3 4 3 3 4 4 4	66 62 57 34 41 46 46	2 6 5 7 8 8 10 8	1.81 1.76 1.72 1.81	1.89 1.83 1.82 1.88	.012 .018	13.0	14.6 14.0 15.1	6.4 7.1	.15 .12 .13 .14				5.1 5.0 5.4 5.8 6.2 6.3 6.4 6.7	4.4 4.1 4.4 4.8 5.3 5.4 5.6 5.7
DEPTH (CRGANI 6A1A ORGN CAPB PCT	C MAT 681A NITG PCT	TER) C/N	IRON 6C2A EXT FE PCT	PHCS 651A TOTL DG/G	(E: 6N2E CA	KTRACT 602D MG	ABLE 84 6P2A NA	SES 58 602A K MEQ	4A) SUM Extb / 100	ACTY 6H1A BACL TEA G-	AL 6G10 KCL EXT	CAT SASA EXTB ACTY	EXCH) 5A6A NHAC	RATIO 801 NHAC TC CLAY	RATIO 8D3 CA TO MG	CA 5F SAT NHAC PCT	(BASE 5G3 EXTB ACTY PGT	SAT) 5C1 NHAC PCT
C00-5 C05-13 C13-28 C28-41 C41-61 C61-69 C69-8i C81-102 102-117	6.17 1.43 .62 .18 .C9 .11 .11		<i></i>		625A 1COA 215A 137A 1C5A 115A 170A 210A 170A	4.8 5.7 7.0 6.0	4.2	•1 •1 •1	•1 •1	9.2 10.8			13.5 14.8 17.6	9.5		1.1	51 51 53 56	68 73 76 82	97 97 102 105
DEPTH CP	(SATUR BEL REST DHF- CH	ATED 8C18 PH	8A H2O PCT	NA 502 ESP PCT	NA SE SAR	SALT 8D5 TOTL SCLU PPH	GYP 6F1A PCT	(BAla EC MMHCS/ CM	6N1B CA	601B MG	SATURA 6P1A NA	ATION 601A K	EXTRACT 611A CC3	6J1Ā HCC3	6K1A CL	6L1A S04	6M1A NG3	4F1 LGID LMIT	4F2 PL5T
CCC-5 COS-13 C13-28 G26-41 C41-61 G61-69 C69-81 G81-102 1C2-117	730		21.0			scc		1.39											-

⁽A) UG/G - PERCHLORIC ACID DIGESTION, AMMONIUM MOLYBDATE AND STANNOUS CHLORICE ACID COLORIMETRY. ANALYSIS BY M. SINGER INSTITUTE OF AGRICULTURE, UNIVERSITY OF MINNESOTA, ST. PAUL, MINNESOTA.

Peden classification: Glossic Entroboralf; coarse-loamy, mixed.

Series classification: Seme -

Soil: Automoba series.
Soil: No.: S68 NN-9-9.
Location: Carlton County, Minnesota; Swl/h, SEL/h, SEL/h, Sec. 30, T. 47 N., R. 20 W.; about 900 feet east and 290 feet north of the southeast section corner. About 92 deg. 55 min. west longitude and hó deg. 31 min. north latitude.

do togs 31 and not have been continental. Some characteristics of temperature in deg. F. are: annual normal - 40, winter normal - 12, summer normal - 55; some characteristics of precipitation in inches are mean annual - 28, May to September - 19, mean smowfall - 55.

Parent material: Reddish brown coarse-lowny till of Automba phase of the Superior Lobe of the Late

Wisconsin glaciation.

Physiography: Central lowlands; ground moraine in Brainerd-Automba Drumlin Area (H. E. Wright, 1972). Landscape setting: Site has a 1 percent convex alope on the summit of a low knoll. Relative relief is about 5 feet. Elevation is about 1,230 feet. Aqualfs and Histosols are the dominant soils in this area.

Vegetation: Decidnous forest; chiefly aspen with a few maples; understory of hazel and grasses;

woodlot is pastured. Drainage: Moderately well drained.

Erosion: None.

Modsture: Saturated to depth of 60 cm; below this it was moist.

Ground water: Water table is perched and flowed into pit at a depth of 30 cm.

Fermoebility: Moderate.

Described by: R. Lewis and H. Finney on October 11, 1968. Sampled by: L. Shields and G. Holmgren on October 11, 1968.

Al 6811211 0 to 5 cm (0 to 2 inches). Black (10TR 2/1) very fine sandy losm; moderate fine granular structure; very frishle; abundant mostly fine with some medium and coarse random roots; about 1 percent coarse fragments; clear wavy boundary. (3 to 8 cm thick)

B21hir 6511212 5 to 13 cm (2 to 5 inches). Dark brown (7.51R 4/3) very fine sandy loss; moderate
fine subangular blocky structure and some fine and very fine granular structure; very friable;
fryglyry mostly. Cine and some fine addition and consecution while the sand some fine and consecutions. Spanishers wert at the think

- 22hr 66L1213 13 to 28 cm (5 to 11 inches). Brown (7.5TR 5/4) fine sandy loom with about 20 percent yellow brown (10TR 5/4) in some parts; few fine faint strong brown mottles; moderate fine submagular blocky structure; very frieble; plantiful fine and very fine roots; about 2 percent coarse fragmants; clear wavy boundary. (15 to 20 cm thick)
- 31 681121h 28 to h1 cm (11 to 16 inches). Reddish brown (5TR h/3) grading to (5TR h/4) sandy loss; few fine reint yellowish red (5TR h/5) mottles; weak medium platty structure; very friable; few fine and very fine roots; about 10 percent coarse fragments mostly 2 to 10 mm in size; clear wavy boundary. (5 to 13 cm thick)
- 32 6611215 bl to 61 cm (16 to 2h inches). Reddish brown (5YR h/3) grading to (5YR h/h) sandy lown; few fine faint yellowish red (5YR h/5) mottles; weak medium platy structure; very frishle; few fine and very fine roots; about 10 percent coarse fragments mostly 2 to 10 mm in size; clear wavy boundary. (5 to 20 cm thick)
- th 6811216 61 to 69 cm (24 to 27 inches). Dark reddish brown (5TR 3/3) losm; about 25 percent tougues as much as 20 mm in width in upper part of reddish gray (5TR 5/2) grading to reddish brown (5TR 5/3) A2 material; common fine distinct yellowish red (5TR 4/6) mottles in A2 material and few fine faint dark reddish brown (2.5TR 3/4) mottles in B material; weak coarse primmatic structure The faint dark reachs brown (2500 3/4) motiles in a material; weak coarse prismatic structure parting to weak medium and coarse angular and subangular blocky structure; firm; A2 material ruptures to a frishle mass under medium pressure; very few fine and very fine roots; common very fine discontinuous random dendritic tubular pores that are lined with moderately thick clay films in B material; many fine and very fine random dendritic tubular pores in A2 material; about 8 percent coarse fragments ranging from 2 to 5 mm; clear wavy boundary. (8 to 15 cm thick)
- 21t 68L1217 69 to 81 cm (27 to 32 inches). Dark reddish brown (5TR 3/3) loam; few faint fine and medium yellowish red (5TR 1/6) mottles; weak coarse prismatic structure; firm, slightly medium platy and some moderate medium subangular and angular blocky structure; firm, slightly sticky; very few very fine and fine roots mostly on prism faces, no power; common thin and moderately thick reddish brown (5TR 1/4) clay films on prism faces and common thin clay films on secondary ped faces; about 8 percent coarse fragments mostly 2 to 5 mm; gradual smooth boundary.
- 22t 6811218 81 to 102 cm (32 to 40 inches). Dark reddish brown (5TR 3/3) sandy loam; moderate medium platy structure; firm in place but ruptures under slight pressure to a friable mass; very few index and inped tubular pores; few moderately thick clay films on upper faces of plates and a few thin clay films on lower faces of plates; about 8 percent coarse fragments mostly 2 to 5 mm; gradual smooth boundary.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - 569MN-7-4

COUNTY - - - BLUE EARTH

GENERAL													A)	J	ULY 197	6			
								040775			5-69L91			2414					
DEPTH	HORI	ZUN	,										M, 3Al, -SILT-						
			SAND			GLAY	VCOS	CORS	MEDS	FNES	VFNS	COS	I FNSI	VFSI	TEXT	11	CLAY	CQ3-	15-
			2-		LT		2-	1-	-5-				-02	- 005	- SAND	.02	, TO	CLAY	
CM									- 25 PC	T LT 2	_05 MM — —	- 02	- - -) PCT	PCT	
000-18	AP		5.5	63.5	31.0	12.3	0,2		0.5	1.4	3.1			15.2	2.4	21.5	40		0.4
018-32	ALZ	!	5.4				0.2				2.7		45.5		2.7		41		0.41
032-45	AZ		7.7	58.6			0.3						57.7						0.3
045-54 054-69	821 822		2.6	34.8 34.9			0.1				1.0		7 32-1 3 31-6	L-7-0	1.6				0.4
069-104				39.5			0.0				0.7		38.4			1.4			0.4
104-130				45.2	44.4	20.5	0.6	1.3	1.7	4.0	2.9	Z-:	5 42.7				46		0.5
130-191		i	35.6				5.1		6.2	10.7	6.7		20.4		28.9	19-4	44		0.54
191-225	206		27.4	37.3	35.3	12.0	2.9	3.5	3.7	9.3	8.0	8.9	28.4		19.4	22.7	34		0.56
DEPTH ((PARTI	CLE S	IZE ANA	LYSIS	, MM,	38, 381	. 382) (BU	LK DEN	SITY) (·	WAT	TER CO	NTENT-		CARB	ONATE	(PI	1
	VOL.	₹		WE	IGHT –) 4ALD	4A1H	401	481C	4810	482	461		6E18	3A1A	8C LA	8C10
	ĢΤ	ĠŢ	75-20	20-5	5-2			1/3-			1/10						L7 •002	1/1	1/2
СИ	2 PCT	75 9CT		. OCT	T 75	1	PCT	BAR	DRY		BAR PCT	BAR PCT	PCT	CM/		PC T	PCT	nzu.	CACI
	TR	0	0	0	TR	97			1.29				14.8					5.2	
018-32	TR	0	0	0	TR	97		1.60	1.40		24.1		8 15.1 4 10.6					5.2 5.7	
	TR TR					95 98			1.79		34.3	33.7		.10				5.3	
	TR	-		ŏ	TR	99		1.17			46-1			.22				5.3	
069-104					TR	98		1.21			43.7	42.8		.19				5.3	
104-130	TR	0	0		TR	91		1.38			31.9		22.8	-11				5-8	
130-191			Z	3		65		1.26	1.51	.064	38.1	36-1	1 20-3	-20				6-4	
191-225	1	0	1	TR	2	76							19.7			10		7.6	
DEPTH (DRGANI	C MAT	TER)	IRON	PHOS	(E)	TRACT	ABLE B	ASES 5	B4A	ACTY	AL				RATIO			SAT
	6ALA	6B1A	C/N	6C2B	65 L A	6N2E	602D	6P2B	602B		6H2A	6G1E	5A3A			803	5F	5C 3	5C 1
		NITG		EXT	TOTL	CA	MG	NA	ĸ	SUM	BACL	KCL		NHAC	NHAC		SAT	EXTB	NHAC
CM	CARB PCT	PCT		FE PCT	DCT	·			ME	• EXIB	TEA	EXT	ACTY	1	TO	TO	NHAC PCT	ACTY PCT	PCT
																		<u> </u>	
000-18				0-6		19.5	4.2		0.7	24.5	8.3		32.8	26.1	0.84	4.6		75	94
018-32				0.7		19.6	4.4		0.6	24.7	12.2		36.9	26+8	0.85	4.4 3.2			92 96
032-45				0.6		11.6 23.6		0.1 0.3	0.4	1207	10.0		49.3	30.6	0-43	2.1			98
045-54		0.01	, ,	1.1 0.9 1.3 1.4 0.9		24.5	12.2	0.3	0.8	37.R	10.3		48-1	38.8	0.61	2.0		76	97
069-104				1.3		23.3	12.4	0.3	0.9	36.9	9.4		46.3	37.6	0.65	1.9		80	96
104-130				1.4		19.8			0.8	31.2	5.0		36+2	30.2	0.68	1.9			103
130-191				0.9		17.6	8.9		0.8	27.7	4.8		32.5	25+9	0.67	2.0	68	85	107
191-225	0.26			1.0				0.3	0-6				32.8 36.9 21.7 49.2 48.1 46.3 36.2 32.5						
DEPTH	LSATUR	ATED	PASTE)		NA	SALT	GYP	(SATUR	ATION	EXTRAC	F 8A1-)	ATTERI	ERG
	8E1		8 A	5D2	5E	805	6F1A		6N18	6018	6PLA		6TLA	AIL6	6K1A	6L1A	6H1A	451	4F2
	REST	PH	H20	ESP	SAR	TOTL		EC.	ÇA	MG	NA	K	CO3	HCO3	ÇL	504	MD3	LOID	
CM	OHM-		PCT	PCT		SOLU PPM	PCT	MMHOS/ CM	(- MEQ	/ LITE	R		- .	- :		INDA
000~18 018-32																			
032-45																			
045-54																		80C	4
054-69	245-																		
069-104 104-130) 5.2) 5.6																67C	35
130-191		6.4																	٠.
191-225		7.4																	
	_000																		

ANALYSES BY MINNESUTA AGRICULTURAL EXPERIMENT STATION, ST PAUL, MN. MINERALOGY BY X-RAY ANALYSIS. TOTAL PHOSPHORUS BY NITRIC-PERCHLORIC DIGESTION. AVAILABLE PHOSPHORUS BY BRAY'S ND 1 EXTRACTANT.

DEPTH	MONT	VERM	TLLTTE	KAGL	QUARTZ	TOTAL P (LBS	P
000-18 018-32	60	0	25	10	5	1506	63 80
032-45 045-54	70	o	20	10	0	784	53 42
054-69 069-104						910	42 32
104-130 130-191 191-225	70	0	20	5	5	1292	20 32

(A) BULK DENSITY AND WATER CONTENT ANALYSES BY THE SOIL SURVEY INVESTIGATIONS UNIT, LINCOLN, NE. UNLESS OTHERWISE INDI-CATED REMAINING ANALYSES BY THE SOIL SURVEY INVESTIGATIONS UNIT, BELTSVILLE, MD.
(B) ORGANIC CARBON IS 17 SQ TO A DEPTH OF 1 M (6A).
(C) LL AND PI BY SOIL MECHANICS LAB, USDA-SCS, LINCOLN, NE.

Pedon classification: Typic Argialboll; very-fine, montmorillomitic, mesic. Series classification: Typic Argialbolls; fine, montmorillonitic, mestic.

Soil: Barbert taxadjunct*

Soil No.: S69 MN-7-4.

Location: Blue Earth County, Minnesota; NW1/4 of NW1/4, Sec. 10, T. 105 N., R. 27 W. (Sterling Twp.); about 360 feet east and 100 feet south of northwest section corner. About 94 deg. 3 min. west longitude and 43 deg. 55 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 16, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal snowfall - 40.

Parent material: Deep, moderately fine and fine textured lacustrine sediments over grayish, calcareous, losmy glacial till (New Ulm) of the Des Moines Lobe, Late Wisconsin age.

Physiography: Central lowlands; glacial Lake Minnesota Plain in the Blue Earth Till Plain of H. E.

Wright (1972).

Landscape setting: About a 1/2 percent slightly concave slope. General topography is nearly level with a few slight rises and microrelief depressions. Relative relief in the immediate vicinity is about 5 feet, but the site is about 1,000 feet from the Maple River which is incised about 50 feet. Elevation of site is about 1,015 feet. Major associated soils on the landscape near this site are

Vegetation: Recently plowed; native vegetation was tall grass prairie or savanna.

Drainage: Poor to very poorly drained.

Erosion: Slight.

Permeability: Slow.

Described by: R. J. Edwards and H. R. Finney on October 21, 1969.

Sampled by: L. Shields, R. J. Edwards, R. H. Rust, J. J. Murray, J. F. Cummins, and H. R. Finney on October 21, 1969.

69B784 0 to 18 cm (0 to 7 inches) Very dark gray (10YR 3/1) silt loam; weak very fine sub-angular blocky structure; friable, slightly plastic and slightly sticky; common roots; abrupt smooth boundary.

69B785 18 to 32 cm (7 to 13 inches) Very dark gray (10YR 3/1) to black (10YR 2/1) silt loam; weak very fine subangular blocky structure; friable, slightly plastic and slightly sticky; common roots; few clean sand and silt particles on faces of peds; clear smooth boundary.

69B786 32 to 45 cm (13 to 18 inches) Dark gray (10YR 4/1) silt loam, gray (10YR 6/1) when dry; common fine faint dark brown (10YR 4/3) and few fine distinct yellowish red (5YR 4/6) mottles; moderate thin platy structure; friable, slightly plastic and slightly sticky; few channel fillings of very dark gray (10TR 3/1); few roots; common vertical open very fine pores; clear smooth boundary.

B21tg 69B787 45 to 54 cm (18 to 21 inches) Very dark gray (5Y 3/1) silty clay or clay; few fine distinct yellowish brown (5YR 4/6) mottles; moderate medium prismatic structure parting to moderate to strong fine and very fine angular blocky structure; very firm, plastic and sticky; common thin and medium black (10YR 2/1) clay films on faces of peds; clear smooth boundary.

B22tg 69B788 54 to 69 cm (21 to 27 inches) Very dark gray (5Y 3/1) dark clive gray (5Y 3/2) clay; moderate medium and coarse prismatic structure parting to moderate to strong fine and very fine angular blocky structure; very firm, plastic and sticky; many medium very dark gray (57 3/1) clay films on faces of peds; clear smooth boundary.

B23tg 69B789 69 to 104 cm (27 to 41 inches) Olive gray (5T 4/2) clay; common fine prominent strong brown (7.57B 5/6) mottles; weak to moderate medium and coarse prismatic structure parting to moderate to strong fine angular blocky structure; very firm, plastic and sticky; few very dark gray (10TR 3/1) krotovinas; many medium dark clive gray (5Y 3/2) clay films on faces of peds; clear smooth boundary.

B24tg 69B790 104 to 130 cm (41 to 51 inches) Gray (5Y 5/1) salty clay loam; many fine and medium prominent light olive brown (2.5Y 5/4 and 2.5Y 5/6) and grayish brown (2.5Y 5/2) mottles; weak medium and coarse prismatic structure parting to weak fine subangular blocky structure; friable, plastic and sticky; few black (10YR 2/1) clay films in root channels; clear smooth boundary.

IIB3g 69B791 130 to 191 cm (51 to 75 inches) Gray (5Y 5/1) and olive gray (5Y 5/2) clay loam; many medium prominent light olive brown (2.57 5/6) mottles; weak fine subengular blocky structure; friable, slightly plastic and sticky; few black (10TR 2/1) clay fillings in pores and root channels; about 5 percent coarse fragments; clear smooth boundary.

Pedon classification: Typic Argialboll; very-fine, montmorillonitic, mesic.

Series classification: Typic Argialbolls; fine, montmorillonitic, mesic.

Soil: Barbert taxadjunct*.

Soil No.: S69MN-7-4.
Location: Blue Earth County, Minnesota; NW1/4 of NW1/4, Sec. 10, T. 105 N., R. 27 W. (Sterling Twp.); about 360 feet east and 100 feet south of northwest section corner. About 94 deg. 3 min. west longitude and 43 deg. 55 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 46, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal snowfall - 40.

Parent material; Deep, moderately fine and fine textured lacustrine sediments over grayish, calcareous, loamy glacial till (New Ulm) of the Des Moines Lobe. Late Wisconsin age.

Physiography: Central lowlands; glacial Lake Minnesota Plain in the Blue Earth Till Plain of H. E. Wright (1972).

Landscape setting: About a 1/2 percent slightly concave slope. General topography is nearly level with a few slight rises and microrelief depressions. Relative relief in the immediate vicinity is about 5 feet, but the site is about 1,000 feet from the Maple River which is incised about 50 feet. Elevation of site is about 1,015 feet. Major associated soils on the landscape near this site are of the Baroda, Minnetonka, and Shorewood series.

Vegetation; Recently plowed; native vegetation was tall grass prairie or savanna.

Drainage: Poor to very poorly drained. Erosion: Slight.

Permeability: Slow.

Described by: R. J. Edwards and H. R. Finney on October 21, 1969.

Sampled by: L. Shields, R. J. Edwards, R. H. Rust, J. J. Murray, J. F. Cummins, and H. R. Finney on October 21, 1969.

Micromorphological studies were made on the A2, B22tg, and IIB3g horizons by Gabriella Carmean under the direction of R. H. Rust. A brief summary of her findings using Brewer's terminology follows:

The matrix is weakly oriented, and has patches of ferromangans. The fabric is vosepic in a flecked matrix; vertical pores or cracks are specific for this horizon. The skeleton, which forms about 12 percent of the volume, is isolated in the matrix and is mainly quartz and is noncoated with outans. Voids are mainly small vertical channels and a few meta vughs and are about 19 percent of the volume. The vertical channels do not have argillans; only the vughs and chambers have thick argillans that are visibly oriented. In the matrix there are vertical zones of diffuse ferromangan accumulation. Well formed nodules and glaebules occur also.

B22tg horizon This was the only sample in which the embedding solution did not impregnate the soil even though all samples were treated the same way. The high content of clay and the small amount of pore space probably is responsible for the low permeability of the sample. The matrix has a vosepic fabric, and was partly washed away in the cutting operations. There is practically no skeleton, the few grains remaining in the sample were coated with thick argillans. The skeleton is only about 4 percent of the volume. The voids form a very intricate pattern of what seems to be skew planes due to the contraction of highly clayey material. Also, a few large waghs and vesicles are present. In total they represent about lli percent of the volume. The cutans cost all the voids very thickly and they form a very strong combination. They have not been disturbed through the preparation of the thin section but seem to be argillans in deposition and stress cutans in origin.

IIB3g horizon
The Fabric has the orientation of the parent material—which is in alteration and decomposition; plasma occurs only in the old words and cracks. The skeleton is mainly shales and some feldspars and quartz granules. The voids (12 percent) occur more as packing voids between the skeleton particles. About one-third of these voids are chambers and meta vughs. There are no cutans in the voids -- only the exterior of the peds and the voids communicating with the exterior are filled with thick cutans.

This pedon seems to be formed from two different parent materials. The upper layer to a depth of 45 on might be a silty lacustrine deposit; the second layer from 45 to 130 om might be a clayey lacustrine deposit. Below 130 cm there is glacial till high in skeleton grains.

In the thin sections the A2 and B22tg samples are very different in matrix and much of the clay washed during the sample preparations seems to be clay "in situ." The thick cutans-illuviations observed in the B22tg can be considered as responsible for a higher clay content in the horizon, but not as much as 30 percent difference between this horizon and the A2 horizon.

SOIL CLASSIFICATION-HISTIC HUMAQUEPT
FINE-LOAMY, MIXED, NCNACIC, FRIGID
SERIES - - - - - - - BLACKHOOF

SOIL NO - - - - - S68MN-9-3

COUNTY - - - CARLTON

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

	L METHC																		
DEPTH	HORI							PARTIC	LF S171	F ANAL '	VS154	1 T 2 W	, 3A1, -SILT-	3616-	3418				BATTE
			SAND	SILT	CLAY	CLAY	VCO:	S CORS	MEDS	FNES	VENS	COS	I FNSI	VFSI	TEXI	iii	CLAY	CO3-	15-
			2-	.05-	L T	LT.	-2-	1-	. 5-	.25-	.10-	.05	-02	.005	- SANE	. 2-			
			.05	.002	.002	.000	2 1	. 5	.25	-10	.05	-02	.002	.002	21	02	CLAY		10
CM																			CLAY
033-41													5 44.6 3 28.7						. 72
C41-48			38.7	49.0	12.3		1.0	2 4.2	9.5	16.8	7.0	20.3	3 24.7		31.7	35.2			. 40
C48-79			48.0	35.2	16.2	6.8		9 4.4	11.6	22.2	9.0	15.1	20.1		39.0	34.6	42		- 41
C75-51	65		48.1	3Ç.8	21.1		1-3	2 3.7	11.4	22.5	9.3	12.6	18.2	6.5	38.8	32.7			.42
	(PARTI																		
PERIN	ACI FLAKIT		11 E MM	WE	TÉMT -	JO + JO		-) 4410	4414	401	4816	WA!	, YDS	MIENI-		LAKD	2414	1	1) 4616
	GT.	`GT	76-2	20-5	5-2	1.1	20-1	1/3-	OVEN	COLE	1/10	1/3-	15.	460		3 7	3-17	1/1	1/2
	2	75	1.2 2.	, 20-,		. 074	PCT	RAR	Day		RAD	RAD	RAD	CM/		5.	CU 2	H20	CACI
ÇM	1 29	PCT	(- PCT	LT 75) LTZ	c G/ĈC	G/CC		PCT	PCT	482 15- 8AR PCT	CH		PCT	PC T	1120	U
C 2 2 - 4 1	70			TO	TO		70	40	1.02	. 028			20 P					4.8	
C41-48	TR	Ō	0	C	TR	65	TR	1.89	1.92	.005		14.4	4.9	.10				5.1	
C48-79	TR	Ó	0	TR	TR	56	TR	1.91	1.97	-010		14.7	6.7	.15				5.6	
C79-91	TR TR TR	c	0	¢	18	56	TR	1.78	1.97	-034		18.3	8.9	-17				6.1	5.5
	ORGANI																	(BASE	
PERIL !	4414	4814		6074	ASIA	ANZE	6021	1 ADZA	402A	244	AUIA	4616	5 5 3 A	RAGA	801	AD 3	56		
	ORGA			EXT				NA.								CA			NHAC
	CARR			FF						FXIB	TFA	EXT	ACTY		tn	TΠ	NHAC		
CF	PCT	PCT		PCT	UG/G	(MEG	7 100	G-) CLAY	MG	PCT	PCT	PCT
C33-41	6.40	.58	9 11		1590A														
C41-48	.69	.05	2 13		215A														
048-79	.27				350A														
C79-51	-15				3954														
	(SATUR				NA								EXTRAC						
DEFIR	881		BA	5D2		805							611A						
			HZC	ESP	SAR			EC					COS						
	OHP-	• • •	****		JAN	SOLL													
CP.	CF		PCT			PPM		CM	(/ LITE					PCT	
C33-41																		648	10
C41-48 C48-79	ACCO	5.2	23.0			50		.31										228	8
C79-51		,,,	23.0	•				• • • •											

Pedon classification: Histic Humaquept; fine-losmy, mixed, nonacid, frigid-13 Series classification: (Same). Smil: Blackhoof series. Soil No.: S68MN-9-3
Location: Carlton County, Minnesota; SE's, NE's, NE's, Sec. 34, T. h6 N., R. 19 W.; about 250 feet north of east-west road and 60 feet west of north-south road. 16

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, STSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL BO			- S728	H-35-4		COUNTY		KITT	SOR					L	TRCOTE	, NEBH	ASKA		
BENER AL	BETHO	DS	-14,1	B1E,21		•			LE NOS	. 72L	620-72	1623		. х	Anch 19	77			
DEPTE CB	Hori	ZCI	(Saut 2- -05	SILT .05-	CLAY	FINE CLAY IT 0000	Vcos 2- 2 1	CORS	LE SIZ SAND BEDS .5- .25	PHES . 25- . 10	VPMS .10- .05	LT 2HE) (COSI .05 .02	, 3A1, -SILT- FMSI .02 .002	3111, VFSI .005	JATE PARI TEXT - SANI 21	INTE	PINE CLAY TO CLAY	HOH- CO3- CLAY	8D1 15- BAR TO CLAY
0-50 50-114 114-1 <i>2</i> 7 137-152	012									,									
CH	(PARTI VOL. GT 2 PCT	CLE S (GT 75 PCT	75-2	ALYSIS WB 0 20-5 - PCT	, 68, IGBT - 5-2 LT 75	3B, 3B	20-2 PCT LT20) (BU) 411D 1/3- BAR G/CC	LK DEN: 421H OFFR DRY G/CC	SITY) 4D1 COLE	4B1C 1/10 BAR PCT	WAT: 4B1C 1/3- BAR PCT	BB CO 4 B2A 15- BAB PCT	TRWT- 4C 1 WRD CE/ CH		CARR 6E 1B LT 2 PCT	OPATE 3A1A LT .002 PCT	(PN 8C1A 1/1 820	80 1) 1/2 CACI
0-50 50-114 114-127 137-152		****						.12 .22 .28	. 26 . 44	.29	615	520	81 87	.51					
CE	ORGANI 6111 ORGN CARB PCT	C HAT 6B1A BITG PCT	TBR) C/B	IRON 6C2B EXT PE PCT	PBOS TOTI	682E C1	TRACT 602D NG	ABLE B 6P2B VA	ASBS 51 6Q2B K	84A) Sub Extb Q / 100	ACTY 6H1A BACL TBA G-	AL 6G1B KCL EXT	(CAT 5A3A EXTE ACTY	EXCH) 5A6A NHAC	RATIO 8D1 WHAC TC CLAY	BATIO 8D3 CA TO EG	CA 5F1 SAT BHAC PCT	(BASE SC3 EXTB ACTY PCT	SAT) SC1 WHAC
0-50 50-114 114-127 137-152	48.9					157 131 115	76.3 55.2 45.8	1.8 1.0 .7	.2	235 187 162	45.2 53.6 57.5		200 241 219	117.0 147.0 135.0 4.8		2.1 2.4 2.5	134 89 85	64 76 74	
CH.	(SATUS 8B1 REST OBE- CB	ated : 8c 1b Pe	PASTE) 81 E20 PCT	BA SD2 BSP PCT	FA 5B SAR	8D5 TOTL SOLU PPH	GYP 6P1A PCT	(8111 TC HBBOS/ CB	GW1B CA	601B #G	SATURI 6P1B WA	TION 1 601B K	EXTRACT 611A CO3	6312 6312 8003	6K1A CL	611a 804	681A 803	LQID LUIT	rrg 4 P2 Plst
0-50 50-114 114-127 137-152	520 650 920	5.3 5.3 5.4	598 705 596			18300 14900 8400		4.24 3.03 2.08		42.5 21.8 12.5		.1							
CE CE	6P SINL COST PCT	(STA	TE OF BB VOL B BOB F PCT	SOLU DECOBP	OSITIC BB BBOSPE BILITI	-HISTOS (P) PB 8C11 T .011	OL CH (BU: 413 FIL STA	ABACTE LE DEB A 411 D 1/3 T REW C G/C	BIZATIO) COLI I 4D' B BE- T WET C	ON B SUBS 1 RES- IDUI PCI	4B4 FILI STATE	- WATER 3 4810 5 1/31 7 REW!	CONTE) NT) 2	1				٠
0-50	16			10Y	R 6/	3 5.5			÷		A 340		81				ا منظم دیک پ		

⁽A) COMPUTED AS MALY SURFACE AND HALF SURSURFACE.

Soil: Cathro series

Location: Kittson County, Minnesota; SW 1, SE 1, Sec. 23, T. 161 N., R. 45 W. About 48.7 deg. north latitude and about 97.5 deg. west longitude.

Climate: Humid continental. Mean annual temperature is 38 deg. F.; mean summer temperature is 66 deg. F., and mean winter temperature is 6 deg. F. Mean annual precipitation is 20 inches; mean May through September precipitation is 14 inches; total annual snowfall is about 35 inches. Frost-free period is about 110 days.

Parent material: Organic soil material that is derived primarily from herbaceous plants over loamy glacial tail of the DegMoines lobe of the Late Wisconsin glaciation.

Physiography: Central lowlands; Lake Agassiz Flain; area is nearly level and local relief is mostly less than 5 feet. Elevation is about 1,015 feet.

Vegetation: Mostly sedges and grasses with some equisetum, mint, and willow.

Size of bog: Several thousand acres.

Distance to adjacent mineral land: About 1 mile. Microrelief: Very slight.

Depth to water table: Greater than 150 cm. Subsidence: Slight.

Described and sampled by: D. D. Barron, J. O. Nordin, R. S. Farnham, W. E. McKinzie, W. C. Lynn, and H. R. Finney on July 27, 1972. Samples were obtained from a pit that was dug with a spade.

0a 721620 0 to 50 cm. Very dark brown (1072 2/2, broken face and rubbed) hando material, dark brown

SOIL CLASSIFICATION-TERRIC BOROSAPRIST LOAMY, MIXED, EUIC SERIES - - - - - - - - - CATERO

SOIL NO - - - - - 57288-60-1

COURTY - - - POLE

GENERAL - - - 18_18.281_2E

SAMPLE MOS. 721.620-721.628

маже 1977

U. S. DEPARTMENT OF AGRICULTURE SOIL COMMERCATION SERVICE, STISC NATIONAL SOIL SURVEY LABORATORY LINCOLM, REBRASKA

			\$ABD 2- .05	SILT .05-	CLAY LT .002	CLAY LT CLAY	v cos 2- 2 1	coss 1-	SAND MEDS • 5+ • 25	P#ES . 25-	VFWS .10~	cos:	-SILT- F#SI .02 .002	VPST .005	FAEL TEXT - SAND 21	INTR II .2~ .02	PIWE CLAY TO CLAY	CC.AY	8D 1 15- BAR TO
0-22 22-50 50-104 04-120 20-135			(PC	T LT 21						 	PCT	PCT	CLAY
EPT E	PARTIC VOL. GI 2 PCT	GT GT PCT	75-20	LYSIS - WE 20-5	, MR, IGHT - 5-2 LT 75	3E, 3E	20-2 PCT LT20		LK DER: 411 F OVEN DRY G/CC	SITY (401 COLE	491C 491C 1/10 8AB PCT	VA1 4B10 1/3- BAB PCT	ER COI : 482A : 15- BAR PCT	TERT- 4C1 WED CR/ CE		CARBO	ORATE 3112 LT .002 PCT	(PF 8C1 à 1/1 H2O	8C1B 1/2 CACL
0-22 22-50 50-104 04-120 20-135				• 	*							- 	95 89 28 2						
CH (C	BGANI 6111 ORGN CABB PCT	C BAS 6F1A FITG PCT	18#) C/#	IRON	PHOS TOTL	(E) 6 N2E CA	TRACT 6021 BG	ABLE B 6P2B #A	ASBS 51 6028 K	SUB SUB EXTS 2 / 101	ACTY 6H1A BACL TEA C G-	AL 6G1E RCL EXT	(CAT 5A3A EXTB ACTY	BXCB) 546A BBAC	BATIO 891 BHAC TO	RATIO 8D3 CA TO	CA 5P1 S AT	(BASI 5C3 EXTB ACTI	SC 1 NHAC PCT
0-22 22-50 30-104 34-120			**************************************					.8	.2	141.0 147.0 46.3 9.3	41.9 50.2		183 197	124.0 137.0 44.7 3.8		3.1 3.3 2.6 7.3		77	114 107
BPTH ((SATUR	ATED OC 1B	P1573) 81	112 5D2		SALT	GYP	(8214		601B	SATUR: 6P1B	TION 6018	EITRAC: 6111 co3	8a1+ 6J1A	6 K 1 A	6113	681A	ATTERE	ERG 472
CB	OHE-		PCT	PCT		SOLU PPB		BBBOS/				- нео	/ LITE	}		- +)	LHIT PCT	I SDX
0-22 2-50	1900 1400 650	6. 1	774 783 149	,		4100 5900 4000			5.3 7.8 31.5		. 2 . 4 . 9	TR . 1	0	.2 .7 1.1	0	4.4 9.4 54.1	3.9 3.6 1.8		

BPTE	((STATE	07 D	2COBPOS			L CHAE		COLE	5085	- - - - - - - - -	ATER (CONTEST-	- }	
	82	8		88		8018		4111	4 D T	*	4 84	ABTC	482	4C 1	
CH	CONT	(FIBRE OFFE PCT	VOL) Bub PCT	Py Bope Solubi		CACL	FILD STAT G/CC	1/39 RBWT G/CC	rt- Ret	EES- IDUE PCT	FILD STAT PCT	1/38 BEWT PCT	15- BAR PCT	CH /	
0-22	25	44	7	7.5YR	5/4	6.0	.26			78	254		95		
22-50	11 47	57 35	22	10 Y R	7/3	5.8	.19 .19			94 91	356 363		102 102		
50-104 04-120 20-135	•,	33	•	10YR	6/3	6.5	• • • •			71	81 14		23		

Peden classification: Terric Borosaprist; loamy, mixed, swic.

Series classification: Same .

Soil: Cathro series . Soil No.: S72 MN-60-1.

Location: Polk County, Minnesota; about 100 feet east and 100 feet north of junction of east-west drainage ditch and county road in the NW & Sec. 11, T. 151 N., R. 39 W. About 47.8 deg. north latitude and about 95.5 deg. west longitude.

Climate: Humid continental. Mean annual temperature is 39 deg. F.; mean summer temperature is 66 deg. F.; mean winter temperature is 8 deg. F. Mean annual precipitation is 22 inches; mean May through September

Parent material: Organic soil material that is derived primarily from herbaceous plants over losmy lacustrine sediments of glacial Lake Agassiz.

Physiography: Central lowlands; Agassiz Lacustrine Plain. Area is nearly level. Local relief is less

than 5 feet. Elevation is about 1,160 feet.

Vegetation: Mostly timothy and quackgrass. Size of bog: Several thousand acres. Microrelief: None.

Distance to adjacent mineral land: About 1 mile.

Depth to water table: 130 cm. Subsidence: Slight.

Described and sampled by: R. S. Farnham, W. E. McKinzle, H. R. Finney, and W. C. Lynn on July 28, 1972. Samples were obtained from a pit that was dug with a spade.

Osp 721624 0 to 22 cm Black (10TR 2/1, broken face and rubbed) matrix with very dark brown (10TR 2/2, broken face) fiber, sapric material; about 30 percent fiber, about 10 percent rubbed; weak fine crumb structure; very friable; herbaceous fiber; common live roots; about 15 percent mineral material; clear amooth boundary.

72L625 22 to 50 cm Black (10TR 2/1, broken face and rubbed) matrix with very dark grayish brown (10TR 3/2, broken face) fiber, hemic material; about 75 percent fiber, about 20 percent rubbed; weak thin platy structure; very friable; herbaceous fiber; about 10 percent mineral material; abrupt smooth boundary.

50 to 104 cm Black (N 2/, broken face and rubbed) matrix with very dark brown (10YR 2/2, broken face) fiber, sapric material; about 40 percent fiber, about 5 percent rubbed; weak thin platy structure; very friable; herbaceous fiber; about 20 percent mineral material in upper part increasing to about 40 percent in lower part; abrupt smooth boundary.

104-120 cm Black (5Y 2/1) loam; weak fine platy structure; very friable; slightly effervescent; clear smooth boundary.

120-135 cm Very dark gray (5Y 3/1) in upper part grading to dark gray (5Y 4/1) in lower 72L628 part, sandy loam; massive; slightly sticky; few pebbles; strongly effervescent.

Remarks: Bulk samples were collected at depths of 0-22, 22-50, 50-104, 104-120, and 120-135 cm. Samples primarily for determination of bulk density were collected at depths of 3-8, 5-15, 12-17, 25-30, 40-45, 45-50, 60-70, 65-70, 90-100, and 95-100 and blocks of known volume were obtained at depths of 0-18, 4-14, 30-51, 36-60, 50-71, and 75-84 cm. Samples primarily for the measurement of fiber were collected at depths of 3-8, 12-17, 25-30, 40-45, 45-50, 65-70, and 95-100 cm.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - 568MN-9-6

COUNTY - - - CARLTON

GENERAL METHODS- - -14,1818.241.28

SAMPLE NOS. 68L1144-68L1151

PEBRUARY 1977

			- •																
DEPTH	HORI	ZON					-		LE SIZE	EANALY									
			SAND	SILT	CLAY	CLAY	VCOS	CORS	MEDS	FNES	VFNS	COSI	FNSI	VFSI	TEXT	11	CLAY	CO3-	
			2-	.05-	LT	LT	2-	1-	. 5-	. 25-	-10-	.05	.02	.005	- SANC	. Z-	TO	CLAY	
			.05	+002	•Q02	-000	? 1		-25	.10	.05	. OZ	*00Z	+002	21	• UZ	CLAY		to
CH										T LT 24									
10-3	A1								4 0		2 4	20 6	20 4			32.6 37.0 37.9 35.8 12.4			3.0
3-6	A 2		39.4	53.9	6.7		6.6	11.9	9.7	7.0	4.2	30.3	23.6		35.2	37.0			•
08-20	821	HIR	39.1	53.7	7.2		6.5	11.3	10.0	7.0	4.3	31.C	22.7		34.8	37.9			•
2C-36	B2 20	HIR	46.0	47.8	6.2		7.6	13.2	12.5	8.2	4.5	28 + 1	19.7		41.5	35.8			•
36-43	2823	T	81.9	12.8	5.3		11.3	29.2	28.9	10.2	2.3	6.9	5.9		79.6	12.4 12.4 2.7			•
43-91	283		83.7	10.2	6.1		15.6	32.6	21.8	10.6	3.1	5.4	4.8		80.6	12.4			•
91-152			97.9	1.8	.3		33.0	48.6	12.8	2.9	. 6	1.2	.6		97.3	2.7			
36-43	(A)	58.9	28.0	13-1		10.3	15.9	16.7	7.0 7.0 8.2 10.2 10.6 2.9	4.3	14.5	13.1		54.6	23.9			•
										SITY I			EP CO	uteut_			NATE	101	4
erin i	VOL.	(NE	IGHT -) 4A10	4A1H	4D1 COLE	481C	481C	4B2	4C1		6È18	BALA	BCIA	8C
	ĢT	GT	75-2	0 20-5	5-2	ŁT	2C-2	1/3-	OVÉN	COLE	1/10	1/3-	15-	WRD		ĻT	LT	1/1	1/
	2	75				.C74	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	. OO Z	H20	CA
; p	PCT	PCT	(-	- PCT	LT 75) LT20	G/CC	G/CC		PCT	PÇT	PCT			PCT	PCT		
			TR	TR	TR	7¢	TR						31.1					5.8	5
3-8		Ç	TR TR	7	5	55	12						5.0					5.4	
08-20		C	TR	8		55	14						4-5					4.9	
20-36		TR	15				26						3.5					5-1	
36-43		TR	30	25		10	44						3.9					5.5	4
43-91		TR	10 TR	10	20		29						4.0					5.5 6.2	4
91-152		Q	TR	.7		TR	43						1.C 5.5					5.1	4
36-43				20	14		34											_	
	DEGANI	C MAT	IFR)	IRON	PHOS	(E	XTRACT	ABLE B	ASES 5	B4A	ACTY	AL	(CAT			RATIO		(BASI	
	AAIA	ARIA	CZN	6C2A	651A	6NZE	6020	6P2A	602A		6HLA	6G10	5A3A	5464	801	803	5F	5C 3	5C
	ORGN		•••	EXT	TOTL	CA	MG	NA	K	SUM	BACL	KCL	EXTB	NHAC	NHAC	CA	SAT	EXTB	NH
	CARB	.,,,,		FE		•				EXTB	TEA	EXT	ACTY		TO	TC	NHAC	ACTY	
CM	PCT	PCT		PCT	UG/G	(. <i></i> -	ME	9 / 100	G-				CLAY	MG	PÇT	PCT	PC
										56.3						5.4			
0C+3	16.80	1.00	4 17	(3608	44.4	8.2	• • •	3.0	70.3	22.7					7.7			
03-8	1.21	.07	> 10	1.1	1220	2.0	• •	• • •	• • •	3.9	0.6	1.7	11.2	7.4	1.06		17	15	
08-20			4 17	1.0	2708	1.0	• 3	: 1		1.7	8.1	1.7	9.5	8.0	. 05		13 15	15	
20-36		.02			9508	2.5	. 7	. 1		3.6			11.4	á. ó	1.51		31		
36-43	.35			.0	1378		• •	• • •		,,,,	,,,,	••	****						
43-91 91-152	.19 .CE				1258														
91-174 36-43					958														
PTH	(SATLIR	ATED	PASTE	NA	NA	SALT	GYP	(SATUR	ATION	EXTRAC'	T 8A1-)	ATTER	BERG
	BEL	8C 1 B	ŞΑ	502	5E	805	6F1A	BALA	6N1B	601B	6PIA	6GIA	611A	6J1A	6KlA	6L] A	6MlA	4F1	4F2
	REST	PH	H2C	ESP	SAR	TOTL		ĒC	CA	MG	NA	K	CC3	HC 03	CL	504	NC3	LQID	
	CHM-					SOLU		MMHOS/										LMIT	INC
CM	Ch		PCT			994	PCT	CH	(- MEG	/ LITE	t ·			:	PCT	
00-3														,					
03-8																			
08-20																			
20-36 36-43	25C(C	4.2	22.7			70		.46											
42-91	17000	5.3	20.8			30		.22											
91-152																			
36-43																			

⁽A) CLAYEY BAND.

(B) UG/G - PERCHLORIC ACID DIGESTION, APMONTUM MOLYBOATE AND STANNOUS CHLORIDE ACID COLORIMETRY. ANALYSIS BY M. SINGER INSTITUTE OF AGRICULTURE, UNIVERSITY OF MINNESOTA, ST. PAUL, MINNESOTA.

Soil: Cloquet series Soil No.: S68MN-9-6 Location: Carlton County, Minnesota; SE1/4, Nw1/4, Sw1/4, Sec. 16, T. 48 N., R. 18 W.; 120 feet east of northwest-southeast road and 500 feet north of north edge of open cultivated field on east side of road. About 92 deg. 38 min. west longitude and 46 deg. 38 min. north latitude. Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 40, winter normal - 12, summer normal - 65; some characteristics of precipitation in inches are: mean armual - 28, May to September - 19, mean snowfall - 55. Parent material: Noncal careous outwash consisting of a coarse-loamy mantle over sandy and gravelly sediments of the Nickerson phase of the Superior Lobe of the Late Wisconsin glaciation. Physiography: Central lowlands; outwash area in Brainerd-Automba Drumlin Area (H. E. Wright, 1972). Landscape setting: Site has a L percent convex, southeast facing slope on the shoulder of an esker or crevass filling. Relative relief is about 50 feet. Soils formed in outwash sediments and organic soils are dominant in the immediate area. Vegetation: Deciduous-coniferous plant formation; paper birch with few aspen and maples; understory is chiefly hazel with some service berries. Drainage: Somewhat excessively drained. Erosion: None. Ground water: Deeper than 2.0 m.
Permeability: Moderate in upper part and very rapid in lower part.

1 to 0 cm (1/2 to 0 inches) Mixture of undecomposed and decomposed plant remains.

Al 681114 0 to 3 cm (0 to 1 inches) Black (N 2/) fine sandy loam; weak very fine and fine granular structure; very friable; abundant fine and very fine roots; few fine charcoal fragments; plentiful whitish fungi mycelia; about 3 percent coarse fragments mostly 2 to 10 cm; abrupt wavy boundary. (1 to 8 cm thick)

Al 6811145 3 to 8 cm (1 to 3 inches) Grayish brown (10YR 5/2) fine sandy loam; moderate fine granular and some moderate very fine subangular blocky structure; very friable; abundant mostly fine and very fine with a few medium and coarse roots; about 3 percent coarse fragments mostly 2 to 10 cm; abrupt wavy boundary. (3 to 8 cm thick)

B21hir 6811146 8 to 20 cm (3 to 8 inches) Dark brown (7.5YR 4/4) fine sandy loam; moderate very fine subangular blocky structure; very friable; abundant mostly fine and very fine with few medium and coarse roots; about 5 percent coarse fragments mostly 2 to 10 cm; gradual smooth boundary.

Moisture: Moist throughout.

(8 to 20 cm thick)

Described by: R. Lewis and H. Finney on October 10, 1968. Sampled by: L. Shields, and G. Holmgren on October 10, 1968.

B22hir 68L1117 20 to 36 cm (8 to 14 inches) Dark brown (7.5YR 1/4) grading to brown (7.5YR 5/4); fine sandy loam; moderate fine subangular blocky structure; very friable; abundant mostly fine and medium with few medium and coarse roots; about 10 percent coarse fragments mostly 2 to 10 cm; layer of brown (10YR 5/3) albic-like material about 3 cm thick and occupying about 10 percent of

P. Da Tay

GENERAL METHODS- - -1A, 1818, 2A1, 28 SAMPLE NOS. 698833-698839 (A) JULY 1976 69L922-69L929 1----- PARTICLE SIZE ANALYSIS, LT 2MM, 3A1, 3A1A, 3A1B DEPTH HOR 1 ZON - - TRATIO FINE (- -FINE NON-CD3-801 CLAY SILT SAND CLAY CLAY vens CORS MEDS FNES VFNS COST VEST FNSI TEXT . 05 . 25--02 SAND -10--005m CLAY BAR . 25 -05 -002 .002 .0002 . 5 .10 .02 - 002 .02 ŤŌ - PCT LT 2MM - -CM PCT PCT CLAY 000-23 A1 EA 25.0 39.4 35.6 2.7 4-1 9.9 7.1 13.5 15.7 7.2 17.9 0.58 10.2 0.47 3.4 6.8 25.5 19.4 24.1 023-33 26.2 36.7 37.1 1.3 4.5 11.2 033-51 3.1 BZIT 27.2 36.7 1.6 12.9 22.5 27.5 27.7 051-68 **B22T**G 30-9 34.1 35.0 21.0 1.6 5.0 12.2 8.4 10-8 26.6 B3TG 37.4 38.3 28.8 13.3 2.2 6.0 23.2 29.8 32.5 0.48 068-81 33.8 4.5 14.9 10.6 46 35 081-102 CIG 102-140 C2 AP (B) 020-30)(- - **-**DEPTH (PARTICLE SIZE ANALYSIS, MM, 3B, 3B1, 3B2)(BULK DENSITY -WATER CONTENT- - - -) CARBONATE - -) 4A10 20-2 1/3-481C 1/3-4C1 WRD VOL. - WEIGHT 4AIH 4D1 4B1C 4B2 6E1B 3ALA 8C1A 8C1E GT 75-20 20-5 OVEN COLE 1/10 GT 5-2 15-LT LT 1/1 1/2 002 PET CH PCT PET PCT LT 75 - -) LT20 G/CC G/CC PCT PCT PCT CM 79 77 000-23 TR 0.89 1.20 0.105 55.3 20.8 6.8 6.4 6.4 7.0 7.7 023-33 TR ā ۸ 1.20C 1.33 TR TR 76 73 0.086 32-0 30.4 17-0 0.18 051-68 068-81 1.75 0.092 32.3 30.5 0.19 29.8 26.5 66 65 1.64 0.066 31.8 0.21 14 16 2 Ó a 1 2 3 1.35 13.7 1.58 0.043 081-102 1.39 13.0 0.18 8-0 1.35 28.7 39.7 102-140 1.63 0.063 27.0 7.9 1.20 37.6 1.9D 000-20 1.63 0-108 020-30 (- -EXTRACTABLE BASES 584A- -) DEPTH (ORGANIC MATTER AL 661D EXCH) RATIO ÇA SE (BASE SAT) PHOS ACTY RATIO 6A1A DRGN C/N 6N2E 6814 6C2n 6514 602D 6P2B 602B 6H2A 5434 SAGA aD1 803 5C3 501 BACL EXTE SAT EXTB EXT KCL NHAC NHAC NITG TOTL CA K EXTE TEA EXT ACTY TO TO NHAC PCT PCT PCT PCT (- - - - --MEQ / 100 CLAY PET PCT PCT CH G- -MG 0.1 8.3 000-23 0.424 0.6 8.4 9.1 0.6 52.2 60.5 5.1 101 84 122 0.180 023-33 033-51 14 0.2 37.6 79 76 2-53 0.8 27.7 0.6 44-0 35.2 0-95 3.0 85 107 1.45 0.7 9.0 0.5 0.88 106 24.2 0.2 0.2 0.2 0.5 32.0 27.9 0.80 81 115 0.066 18-840 0.39 0.8 0.4 20.2 081-102 0-26 0.3 0.64 0.7 102-140 0.26 0.8 0.3 0.4 15.9 0-64 000-20 020-30 DEPTH (SATURATED PASTE) SALT ---- SATURATION EXTRACT .8A1-----) ATTERBERG 6JIA 6KIA 6LIA 6MIA HCO3 CL SO4 NO3 SE1 5D2 ESP BAIA 6NIB 601B 6PIA 6QIA 611A CO3 4F1 4F2 LQID PLST 8C1B 5E 6F1A REST TOTL PH H20 EC CA MG NA MMHOS/ INDX SOLU PCT PCT 1 - - - - - - - MEQ / LITER - - - -CM CM PCT PPM 000-23 16 023-33 033-51 49F 23 051-68 068-81 081-102 39F 17 2000 102-140 3000 7.5 000-20

ANALYSES BY MINNESOTA AGRICULTURAL EXPERIMENT STATION, ST PAUL, MN. MINERALOGY BY X-RAY ANALYSIS. TOTAL PHOSPHORUS BY NITRIC-PERCHLORIC DIGESTION. AVAILABLE PHOSPHORUS BY BRAY'S NO 1 EXTRACTANT.

DEPTH	{		INERALOG	Y	1	TOTAL	AVAIL
	MONT (VERM	ILLITE CT LT 0	KAOL O2MM	QUARTZ	P (L85	/A)
000-23	65	0	20	10	5	1426	18
023-33						478	8
033-51	80	0	10	10	0		5
051-68	••	-			-	806	5
068-81							4
081-102	80		10	10	0	910	4
							_

- (A) BULK DENSITY AND WATER CONTENT ANALYSES BY THE SOIL SURVEY INVESTIGATIONS UNIT, LINCOLN, NE. UNLESS OTHERWISE INDI-CATED REMAINING ANALYSES BY THE SOIL SURVEY INVESTIGATIONS UNIT, BELTSVILLE, MD.
 COLLECTED FROM ADJACENT CULTIVATED FIELD.

- MICRO-PENETRATION RESISTANCE A ROD O.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10-BAR, A DISTANCE OF O.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE (D) STRENGTH.
- (E) DEGANIC CARBON IS 22 KG/M SQ TD A DEPTH OF 1 M (6A).
 (F) LL AND PI BY SOIL MECHANICS LAB, USDA-SCS, LINCOLN, NE.

Pedon classification: Typic Argiaquell; fine-losmy, mixed, mesic.

Series classification: Same.

Soil: Cordova series. Soil No.: S69 MN-7-11.

Location: Blue Earth County, Minnesota; SEL/4 of NEL/4, Sec. 9, T. 108 N., R. 26 W. (Mankato Twp.); about 800 feet north and 100 feet west of southeast corner of NEL/4.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 46,

Climate: Hamid continental. Some characteristics of temperature in deg. F. are: annual normal - 46, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal annual anowfall - 40.

Parent material: Calcareous lossy glacial till (New Ulm) of the Des Moines Lobe, Late Wisconsin age.

Physiography: Central lowlands; Elus Earth Till Plain of H. E. Wright (1972).

Landscape setting: Level plane slope. General topography is nearly level with a few slight rises and depressions. Relative relief is about 5 feet. Elevation of the site is about 1.005 feet.

Major associated soils on the landscape near this site are of the Minnetonka and Rolfe series. Yegetation: Minnetonka and Rolfe series. Yegetation: Minnetonka and Rolfe series.

Drainage: Poorly drained.

Erosion: Slight.

· —

Permeability: Moderately slow to moderate.

Described by: R. J. Edwards and H. R. Finney on October 2h, 1969.

Sampled by: L. Shields, R. J. Edwards, J. F. Cummins, J. J. Murray, and H. R. Finney on October 24, 1969.

- Al 69B833 O to 23 cm (O to 9 inches) Black (N 2/) silty clay loam or clay loam; moderate very fine subsequiar blocky structure; friable, slightly plastic and slightly sticky; common roots; clear smooth boundary.
- A3 69B834 23 to 33 cm (9 to 13 inches) Hlack (N 2/) clay loam; moderate to strong very fine subangular and angular blocky structure; friable, slightly plastic and slightly sticky; common roots; clear smooth boundary.
- B21t 698835 33 to 51 cm (13 to 20 inches) Black (2.57 2/1) to very dark gray (2.57 3/1) heavy clay loss; weak to moderate fine and medium prismatic structure parting to moderate to strong fine and very fine subengular and angular blocky structure; firm, plastic and sticky; many thin black (10TR 2/1) clay films on faces of peds; few thin porous grayish coatings on faces of peds; clear smooth boundary.
- B22tg 69B836 51 to 68 cm (20 to 27 inches) Olive gray (5Y 4/2) to very dark grayish brown (2.5Y 3/2) heavy clay loam; few fine faint olive gray (5Y 4/2) mottles; weak to moderate fine and medium prismatic structure parting to moderate to strong subangular and angular blocky structure; firm, plastic and sticky; many thin and medium very dark gray (10YR 3/1) and black (10YR 2/1) clay films on faces of peds; clear smooth boundary.
- B3tg 69B837 68 to 81 cm (27 to 32 inches) Olive gray (5Y 5/2) clay loam; common fine distinct light clive brown (2.5Y 5/4) mottles; weak fine and medium prismatic structure parting to weak fine and medium subangular blocky structure; firm, plastic and sticky; few thin very dark gray (10YR 3/1) clay films on faces of peds and few thick clay films in pores and root channels; few soft lime masses; few fine shale fragments; clear smooth boundary.
- Clg 69B636 61 to 102 cm (32 to 40 inches) Olive gray (57 4/2) loam; common fine distinct light olive brown (2,57 5/4 and 2,57 5/6) mottles; weak coarse prismatic structure parting to weak fine subangular and angular blocky structure; friable, slightly plastic and slightly sticky; few black (10TR 2/1) clay films in old root channels; about 5 percent soft lime masses; slightly effervescent; clear smooth boundary.
- 69B839 120 to 140 cm (40 to 58 inches) Olive brown (2.5Y 1/4) and light clive brown (2.5Y 5/4)

 lown; common fine and medium distinct dark gray (5Y 1/1) mottles; weak fine angular and subangular blocky structure; friable, slightly plastic and slightly sticky; common fine seams of gray (5Y 6/1) segregated lime; few reddish iron oxide stains; about 5 percent soft lime masses; strongly effervescent.

Continued

21a

Pedon classification: Typic Argiaquoll; fine-loamy, mixed, mesic.

Series classification: Same.

Soil: Cordova series. Soil No.: S69MN-7-11.

Location: Blue Earth County, Minnesota; SE1/4 of NE1/4, Sec. 9, T. 108 N., R. 26 W. (Mankato Twp.);

about 800 feet north and 100 feet west of southeast corner of NE1/4.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 46, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal annual snowfall - 40.

Parent material: Calcareous loamy glacial till (New Ulm) of the Des Moines Lobe, Late Wisconsin age.

Physiography: Central lowlands; Blue Earth Till Plain of N. E. Wright (1972).

Landscape setting: Level plane slope. General topography is nearly level with a few slight rises and depressions. Relative relief is about 5 feet. Elevation of the site is about 1,005 feet. Major associated soils on the landscape near this site are of the Minnetonka and Rolfe series.

Vegetation: Mixed deciduous forest. Native vegetation probably was savanna.

Drainage: Poorly drained.

Erosion: Slight.

Permeability: Moderately slow to moderate.

Described by: R. J. Edwards and H. R. Finney on October 24, 1969.

Sampled by: L. Shields, R. J. Edwards, J. F. Cummins, J. J. Murray, and H. R. Finney on October 24, 1969.

Remarks: Colors are for moist soil. These samples were obtained from a pit with approximate dimensions of 1 x 3 x 2 m in depth.

Micromorphological studies were made on the B2lt, B22tg, and B3tg horizons by Gabriella Carmean under the direction of R. H. Rust. A brief summary of her findings using Brewer's terminology follows:

B21t horizon

There is no obvious orientation of the matrix; the fabric can be classified as skelsepic, the skeleton grains are generally covered by a plasma separation—argillans. The rest of the matrix

magnification present a lacy pattern; they are mainly channels with branching patterns—matavoids (with smooth walls) and a great number of vughs interconnected by very small and narrow channels. Thin argillans appear as grain cutans and also as void cutans, very thin, predominantly yellow. Sesquans are usually globules and nodules.

B22t horizon

Orientation of plasma: skelvosepic with well developed plasma separations in the voids and also at the surface of the skelston grains. Similaton representing 9 percent of volume seems to be represented by feldspar and opaque anisotropic minerals. Voids representing 21 percent are mainly metavoids, or rounded vughs connected with narrow channels. The cutans are very thin in the voids but, in the big voids which are connected with the exterior of the peds, there is a fine material of gray black color which fills some of the voids—without forwing cutans. Some sesquans are present in the horizon.

B3t horizon

The matrix shows little orientation. The fabric is mainly skel-vosspic; plasma separations occurring as cutons lining soils and around skeleton particles. The skeleton fraction is much increased (to about 30 percent). Shale is predominant in much of the material. Voids are represented by some

COARSE-LOAMY OVER SANDY, MIXED, FRIGID

SERIES - - - - - - UROMWELL SERIES

SOIL CENSERVATION SERVICE, MTSC NATIONAL SCIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO			- S68MN	1-9-7	(COUNTY		CARL	ION					•			-30-		
GENERAL	PETHCO	:s	-14,18	18,2A	1,28			SAMP	E NOS.	68L11	70-68L	1178		F	EBRUARY	1977			
	HCRI																		
DEFIN		.01				FINE	1		SAND -		1	t	-S 11 7-		1 FAMI	TNTD	FINE	NON-	AD 1
			SAND	SILT	CLAY	CLAY	ACOZ	CORS	MEDS	FNES	VFNS	COSI	FNSI	VFSI	TEXT	11	CLAY TO CLAY	CO3-	15-
			2-	-05-	LT	LŤ	2-	1-	• 5-	-25-	.10-	.05	.02	.005	- SANC	-2-	10	CLAY	BAR
r M			1	.002			2 l •		427 PCT	11 28	.U3		- 002		2-01) PÇT	PCT	CLAY
CCC-5	A 1		56.5	36.7	6.8		2.7	16.8	19.8	13.7	3.5	20.8	15.9		52.9	28.4			1.03
C05-8	A2		51.2	43.7	5.1		3.8	11.8	17.6	14.1	3.9	23.9	19.8		47.3	32.0			.78
008-20	B216	·IR	57.8	37.9	4.3		4.3	14.2	19.9	15.0	4.4	22.7	15.2		40.0	31.6			. /4
020-30	2023	114	94.1	2.5	3.4		15.9	40.3	26.9	10.5	.5	1.0	1.5		93.6	3.3			-29
056-79	2831		96.5	1.6	1.9		.6	5.9	40.9	46.4	2.7	1.1	.5		93.8	16.1			.53
079-102	2832		97.8	1.1	1.1		1.2	25.6	54.6	15.3	l.C	. 6	.5		96.8	4.3			
102-122	2C1		98.5	.6	. 9		18.2	47.1	25.7	7.1	3	-1	.5		98.2	1.7			
CCC-5 CO5-8 CO8-20 C2O-38 O38-56 O56-79 O79-102 102-122 122-175	262		98.1	1.1	.8		1.8	12.0	4C.7	39.9	3.8	.7	• •		94.3	18.2			
																		~~~~	
DEPTH	(PARTIC	LE S	IZE ANA	TASIZ	, MM, :	36, 36	1. 382	BUI	K DENS	ITY )	(	-WATI	ER CO!	NTENT-		) CARB	ONATE	(P)	1)
	VOL. (			· - WE	IGHI -		20-2	1/3-	OVEN	401	4816	9816	15-	461 WBD		OEIB	JALA	9C1A	1/2
	91	75	75-20	20-5	3-2	.074	PCT	BAR	DRY	COLE	BAR	BAR	BAR	CM/		2'	-CO2	H20	CACL
CM	VOL- ( GT 2 PCf	PCT	(	PCT	LT 75 -		LTZC	G/CC	G/CC		PCT	PCT	PCT	CM		PCT	PC T		5.152
000~5 005~e		0	0	70	70	46	70						4.0						4.2
ひいきゃっと		ŭ	TD	1 1 2	1 1 2	43	5						3.2						4.3
C20-38		č	TR	ž	4	36	6						2.7						4.2
C38~56		Č	Ö	4	11	5	15						1.0					5.4	
C56-79		C	0	TR	TR	4	TR						1.0					5.4	
C79-102		Č	_0	TR	TR	3	TR						.9						4.5
000~5 005~8 008~20 020~38 038~56 056~79 079~102 102~122		ŏ	TR	9	12	1	21						1.2					5.7	
DEPTH (	COCALI			IPON	PHOS	(E	Y TD ACT	ARIF S	SES 58	(442 -)	ACTY	AI	LCAT	EXCH)	RATIO	RATIO	CA	LBASE	SAT
DEF (III )	6ALA	6BIA	C/N	6C2A	6514	6NZE	6020	6PZA	6QZA		6H1A	6G1C	SASA	5464	8D1	8D3	SF	5C 3	5C1
	ORGN	NITG		EXT	TOTE	ÇA	MG	NA	ĸ	SUM	BACL	KCL	EXTB	NHAC	NHAC	CA	SAT	EXTB	NHAC
	CARE			FE						EXTB	TEA	EXT	AÇTY		TO	10	NHAC	ACTY	
CP	PCT	PCT		PCT	UG/G	(			MEC	7 100	G		- <i>-</i>	 	) CLAY	MG	PC1	P(,	PL1
CCO-5 CC5-8 CO8-20 C2C-38 038-56 056-79 079-102	3.52	-19	6 20	.8	145A	5.6	2.1	-1	. 5	8.3	8.5		17.2	16.5	2.43	2.7	34	48	50
CC5~8	1.83	.09	7 19	. 6	2454	3.1	.7	•1	.2	4.1	7.5	.5	11.6	25.2	4.94		12	35	16 16
C08-20	.72	. C4	0 18	. 7	290A	.6	- 1	-1	.1	.9	7.8	1.3	8.7	5.7	1.33		11	10	16
C2C-38	• 30	.01	9	.7	754	. 4	- 1	• 1	. i	•7	6.7	1.6	7.4	4.6	1.05		12		15 23
038~56	.15 .04			• 1	30UA	• • • • •		• 1	* L	• •	1 6	1.2	2.7	2.1	1.13		19	10	43
079~102	.07			• •	1554	• • •	• .7	• •	••	• ′		• • •			****				
102-122	.09				28UA														
122-175					90A														
CEPTH	(SATUR	ATED	PASTE)	NA	NA	SALT	GYP	(		<b>-</b>	SATURA	TION !	EXTRAC	T 8A1-			1	ATTER	BERG
	8E1	BC 18	84	502	5E	8D5	6F 1 A	BAIA	6NIB	6018	6PIA	601A	611A	6J1A	6K 1A	6L1A	6MIA	4F1 LOID	4F2
	REST	РН	HZC	ESP	SAR	101L	i	EL MMU05/	CA	MG	N/A	κ.	Cna	MLUS	LL	304	NUS	LUID	INDX
C 14	~ ~		007	DCT		DDM	DC I	CM	1 ~			· MEG	/ 1 TTF:	R				) PCT	
COC-5																			
C05~8 008~20																			
C20-38		4.8	16.3			3 C		. 32											
038-56								•											
056-79																			
079-102		5.4	27.6			5 ¢		.09											
1CZ-1Z2	?																		
122-179																			

⁽A) UGG - PERCHLORIC ACID DIGESTION, AMMONIUM MCLYBDATE AND STANDOUS CHLORIDE ACID COLORIMETRY. ANALYSIS BY M. SINGER INSTITUTE OF AGRICULTURE, UNIVERSITY OF MINNESOTA, ST.PAUL, MINNESCTA.

Pedon classification: Typic Dystrochrept; coarse loamy over sandy, mixed frigid.

Series classification: Same.

Soil: Cromwell series.

Soil No.: S68M-9-7 Location: Carlton County, Minnesota; NWI/H, NWI/H, SEI/H, Sec. 24, T. 48 N., R. 19 W.; about 600 feet south and 100 feet east of the northwest corner of the SEI/H of the section. About 46 deg. 38 min. north latitude and 92 deg. 42 min. west longitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal -40, winter normal - 12, summer normal - 65; some characteristics of precipitation in inches are mean annual - 28, May to September - 19, mean anowfall - 55.

Parent material: Noncalcareous outwash consisting of a thin coarse-loamy mantle over sandy sediments of the Mickerson phase of the Superior Lobe of the Late Wisconsin glaciation.

Physiography: Central Lowlands: Outwash plain in Brainerd-Automba Drumlin Area (H. E. Wright, 1972). Landscape setting: Site has a level plane slope. Local relief is about 1 m. Dominant soils in the immediate area are one of this and the Omega series and Histosols.

Vegetation: Deciduous-coniferous plant formation; chiefly aspen; understory is chiefly hazel.

Drainage: Well drained.

Erosian: Name.

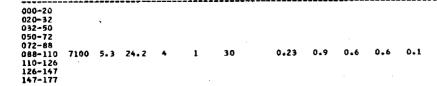
Ground water: At 160 cm.
Permeability: Moderately rapid.

Moisture: Moist throughout the profile.

Described by: R. Lewis and H. Finney on October 10, 1968. Sampled by: L. Shields, G. Holmgren, and R. Paulson on October 10, 1968.

- 1 to 0 cm (1/2 to 0 inches). Leaves, branches and twigs in varying stages of decomposition.
- 6811170 0 to 5 cm (0 to 2 inches). Black (10YR 2/1) fine sandy loam; moderate fine and very fine granular structure; very friable; about 1 percent whitish (unstained) sand grains; about dant very fine and medium random roots; about 1 percent fine gravel; abrupt wavy boundary. 5 cm thick)
- 6811171 5 to 8 cm (2 to 3 inches). Reddish gray (5YR 5/2) fine sandy loam; weak very fine and fine subangular blocky structure; very friable; abundant very fine through medium random roots; about 1 percent fine gravel; discontinuous horizon occupying about 15 percent of pedon; abrupt wavy boundary. (0 to 6 cm thick)
- Phir 68L1172 8 to 20 cm (3 to 8 inches). Dark brown (7.5YR 4/4) grading to (7.5Y 3/4) fine sandy loam to sandy loam; moderate fine and very fine subangular blocky structure with a few medium size peds; very friable; abundant fine and medium random roots; about 1 percent fine gravel; gradual smooth boundary. (10 to 18 cm thick)
- B22hir 68Ill73 20 to 38 cm (8 to 15 inches). Dark brown (7.5YR 4/4) sandy loam; weak medium and coarse subangular blocky structure parting to weak fine subangular blocky structure; very friable; plentiful fine and medium random roots; about 1 percent fine gravel; abrupt wavy boundary. (10 to 20 cm thick)
- B23 68L1174 38 to 56 cm (15 to 22 inches). Reddish brown (5YR 4/4) grading to dark reddish brown (5YR 3/4) loamy coarse sand; massive; very friable; about 10 percent coarse fragments ranging TTR23 from 2 to 5 mm; many thin stains on sand particles; few fine random roots; abrupt smooth boundary. (15 to 25 cm thick)
- B31 68L1175 56 to 79 cm (22 to 31 inches). Reddish brown (5YR 1/4) sand; about 50 percent massive breaking into weakly coherent chunks, remainder is single grain; loose; very few fine roots; very thin stains on about 50 percent of the sand grains; a few wavy 1 to 2 mm bands of dark reddish brown (5YR 3/4); gradual smooth boundary. (18 to 33 cm thick)
- 6811176 79 to 102 cm (31 to 40 inches). Reddish brown (5YR 4/4) sand; loose; very few fine roots; few 8 to 114 cm thick lenses and masses of coarse and very coarse sand and very fine gravel; very thin stains on about 50 percent of sand grains; abrupt smooth boundary.
- 6811177 102 to 122 cm (40 to 48 inches). Reddish brown (5TR 5/3) coarse sand; single grain; loose; very few fine roots; about 10 percent gravel, mostly 2 to 10 mm with some to 15 mm; abrupt smooth boundary. (15 to 25 cm thick) IICl
- 6811178 122 to 175 cm (48 to 69 inches). Reddish brown (5YR 5/3) sand; few coarse distinct dark reddish brown (5YR 3/3) mottles; single grain; loose; very few fine roots; about 20 percent weakly coherent chunks that part readily to single grain; abrupt smooth boundary.
- IIC3 175 to 193 cm (69 to 76 inches). Reddish brown (5YR 5/3) gravelly coarse sand; single grain; loose; about 15 percent fine gravel. (Not sampled)
- Remarks: Soil colors are for moist conditions. Sampleswere obtained from a pit with dimensions of about 1.5 by 2.5 by 2 m in depth. Profile is considered typical for this series except for mottles in the C2 horizon. Soil temperature at 50 cm was 8.75 deg. C. and at 100 cm was 9.0 deg. C.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA


SOIL NO - - - - - S70MN-24-2

COUNTY - - - FREEBORN

GENERAL METHODS- - -14,1818,241,28

SAMPLE NOS. 7011100-7011108

DEPTH	HORIZ	ON	(																RAT
			1										-SILT-				FINE	NON-	8D1
			SAND	SILT		CLAY							FNST			11	CLAY	CO3-	15-
			2-	.05-	LT	LŤ	2-	1- .5	•5- •25	.25-	.10-	.05	.02	.002	SAND	•2÷ •02	TQ CLAY	CLAY	BAF
CM			(	.002	-002				PC1	LT 2	4M					1	PCT	PCT	CLAY
00-20			43.1	38.2	18.7		1.6	10.1	14.1	13.8			21.2		.39.6	26.1		19	
20-32	B211	•	27.5		22.5		.5	5.5	8.5	9.7	3.3	21.3	28.7		24.2	28.6		23	.4
32-50	8221		31.7	43.8	24.5		.7	5.1	9.0	12.3	4.6	19.4	24.4		27.1	29.6		25	•
50-72	28231	•	63.1	20.5	16.4		2.6		19.2	23.3	6.7	10.2	10.3		56.4	26.4		16	•
72-88	28241		84.9	4.6	10.5		8.3		30.6	18.9	1.6	1.6	3.0		83.3	8.6		11	•
88-110			84.5	5.8	9.7		10.1			13.6	1.0	1.3			83.5	5.9		10	•
10-126	2832		91.4	4.0	4.6		17.9		25.5	19.2	Z.0	1.5			89.4	9.2		5	•
26-147			92.2	4.5	3.3		18.0			21.2	2.1	2.4			90.1	10.5 38.0		3	•
<b>47</b> –177	2C2		93.5	4.0	2.5		3.1	9.1	13.6	60.1	7.6	1.3	2.7		85.9	30.0		•	•
 EPTH (	PARTIC	LE S	IZE ANA	LYSIS	. MM.	38, 381	, 382	) ( BUI	LK DENS	ITY	(	WAT	ER CO	TENT-	1	CARBO	NATE	(P)	
	VOL.			WE	IGHT -			) AALD	4AlH	401	4B1C	481C	4B2	4C1		6E 1B	3A1A	8C1A	
	GT	GT	75-20	20-5	5-2	ŁŤ		1/3-	OVĖN	COLE	1/10	1/3-	15-	WRD		ĻŤ	LT	1/1	1/
	2	75				-074	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	.002	H20	CA
:M	PC T	PCT	) 	- PCT (	.T 75	)	LTZO	6/00	G/CC		PCT	PCT	PCT	CM		PC T			
0-20	TR	0	0	0	TR	59			1.61	.029 .025	22.1 25.6	19.7		.17 .20	2.2			5.6 5.6	9
0-32	TR	0	0	ō	TR	74 71		1.44	1.55	.042	29.1	27.2		.23	2.58			5.3	4
32-50 30-72	TR 12	0	0	9	TR 10	33		1.52	1.50		17.4	15.6		.12	4.7	•		5.2	4
72-88	18	ŏ	ŏ	12	15	12		1.60A	1.05	.024	2117		4.9	***				5.2	4
72-00 88-110	16	ŏ	TR	11	13	12		1.60A					5.2					5.5	5
10-126	24	ŏ	ŤR	17	18	-6		1.60A					2.8			•		6.1	6
26-147		ŏ	TR	16	18	6	34	1.60A					2.3			3	0	8.0	7
47-177		0	TR	10	11	7	21	1.60A					2.1			2	0	8.4	7
	OPCANIC		 TER )	TRON	9405	(EX	TR ACT	ABLE B				AL	CAT	EXCH)		RATID	CA	(BASI	E SA
ein t	6414	681A		6C 2B	11104		602D				6H1A	6G1E		5A6A	801	803	5F 1	5C3	50
	DRGN	NITG	• • • • • • • • • • • • • • • • • • • •	EXT	TOTA		MG	NA	K	SUM	BACL	KCL	EXTB	NHAC	NHAC	CA	SAT	EXTB	NH
	CARB			FE						EXTB	TEA	EXT	ACTY		TO	TO	NHAC	ACTY	
CM	PCT	PCT		PCT	PCT	(			)3M		) G- ·			} 		MG	PÇT	PCT	PC
0-20	1.620	.14		0.7		11.1	3.4	0.2	0.4		6.7		21.8	16.6	0.89	3.3	67 63	69 64	
0-32	0.92	.09				10.6	3.5	0.2	0.3	14.6	8.1	0.5	22.7 23.5	16.7 17.9	0.74	3.0 2.4	63	70	
32-50	0.63	.05	8 11			11.2	4.6	0.2	0.4	16.4	7.1 4.4	0.4		12.2	0.74	1.9	53	70	
50-72 72-80	0.42			0.8		6.5 4.9	3.5	0.2	0.3	8.0	3.1	0.1		9.1	0.87	1.9	54	72	
72-88 3 <b>8-</b> 110	0.26			0.4		4.0	2.1	0.3		6.6	1.8	0.1		7.2		1.9	56	79	
0-126				0.8		3.6	1.7	0.2	0.1	5.6	1.5	~~*	7.1	5.0	1.09	2.1	72	79	1
26-147				0.5		3.4D	0.8D			4.5					0.88				
67-177				0.4		2.70	0.80		0.1	3.8				3.3	1.32				
						SALT	GYP				CATIN	A T 1 ON 1	E XTDAC	T 8A1-			)	ATTER	SER!
EPTH	8E1 8		PASTE) 8a	5D2	NA 5E	805		BALA		6018	6P1B		611A		6K1A	6L1A	6M1A	4F1	
	BEI (		BA ≌7Л.—		_9E _042_	TLUIT	U1 1#	FC	UV.	MG	_NA	K	ÇQ3	HCO3	Ci	\$04	NO3		
												¥			_				



29E

35E

15

Pedon classification: Typic Argiudoll; fine-losmy, mixed, mesic* Series classification: Typic Argiudolis; fine-loamy over sandy or sandy-skeletal, mixed, mesic-

Soil: Dakota taxadjunct* Soil No.: S70 MN-24-2.

Location: Freeborn County, Minnesota; about 1 mile south of Glenville; about 1,290 feet west and 450 feet north of the southeast corner of Sec. 7, T. 101 N., R. 20 W.; about 93 deg. 16 min west longitude and 43 deg. 34 min. north latitude.

Climate: Humid continental. Some features of temperature in deg. F.: annual normal - 46, summer normal - 70, winter normal - 18; some features of precipitation in inches: annual normal - 30, May through September - 19, annual normal snowfall - 40.

Parent material: Outwash of the Des Moines Lobe, Late Wisconsin age, consisting of a losmy mantle over a sandy substrata.

Physiography: Central lowlands; Valley Train in Owatonna Moraine Area (of Wright) and Cedar Valley

Outwash (MN Soil Atlas).

Landscape setting: Pedon has level plane slope. Topography in the immediate vicinity is mostly nearly level. Relative relief is about 5 feet, and the valley train is about 2 miles wide. Elevation is about 1,225 feet.

Vegetation: Alfalfa field. Native vegetation was tall grass prairie or savanna.

Drainage: Well drained.

Erosion: None. Moisture: Moist.

Permeability: Moderately rapid in the part of the solum in the upper sediment and rapid below that.

Described by: J. F. Cummins on October 21, 1970.

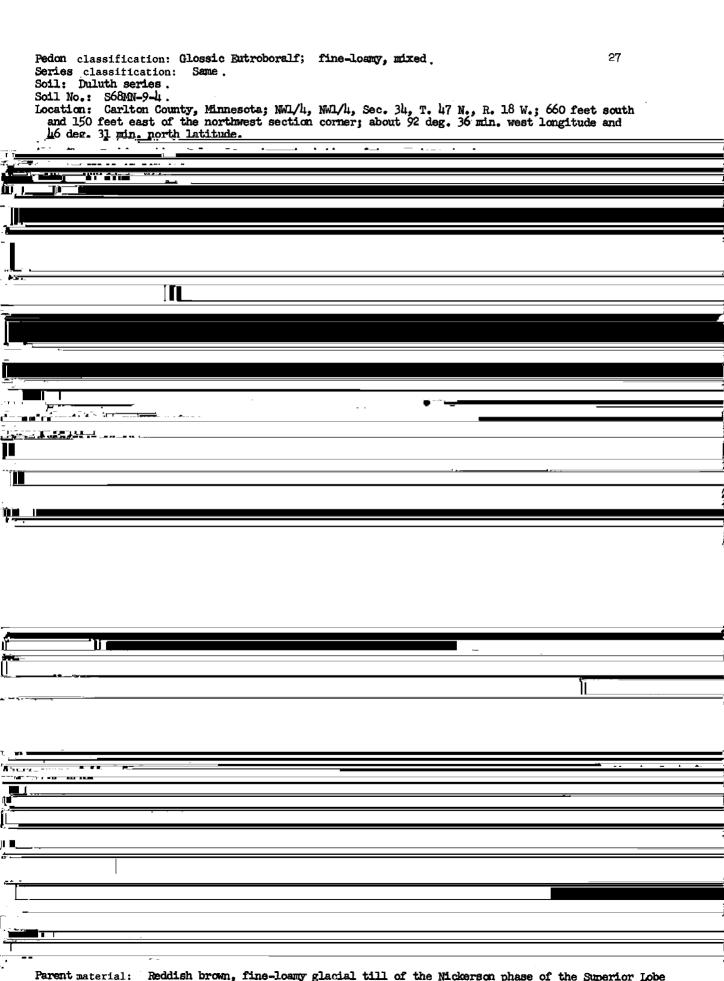
Sampled by: R. R. Grossman. E. R. Gross. R. H. Rust. and J. F. Cummains on October 21, 1970.

- 70Lll00 0 to 20 cm (0 to 8 inches) Black (10YR 2/1) loam, very dark brown (10YR 2/2) rubbed, dark brown (10YR 3/3) dry; weak fine subangular blocky structure; friable; abrupt smooth boundary.
- 70Ill01 20 to 32 cm (8 to 13 inches) Dark brown (10TR 3/3) loam, very dark grayish brown (10TR 3/2) ped faces; moderate fine subangular blocky structure; friable; few very dark brown (10TR 2/2) tongues; thin patchy clay films on faces of peds; abrupt wavy boundary.
- 70L1102 32 to 50 cm (13 to 20 inches) Dark yellowish brown (10YR 4/4) losm near clay losm, dark brown (101R 4/3) ped faces; weak fine and medium prismatic structure parting to moderate fine and medium subangular blocky structure; friable; thin continuous clay films on faces of peds; abrupt wavy boundary.
- IIB23t 70L1103 50 to 72 cm (20 to 28 inches) Dark yellowish brown (10YR 4/4) sandy clay loam or sandy loam, dark brown (10YR 4/3) ped faces; weak fine and medium prismatic structure parting to moderate fine and medium subangular blocky structure; very friable; thin continuous clay films on faces of peds; abrupt wavy boundary.
- IIB24t 70L1104 72 to 88 cm (28 to 35 inches) Dark yellowish brown (10YR 3/4) gravelly loamy sand; few medium distinct dark brown (7.51R 3/4) mottles; weak medium and coarse subangular blocky structure; very friable; coarse sand and coarser particles mostly shale; few thin clay films on faces of peds and few clayey bridges between sand grains; abrupt wavy boundary.
- IIB31t 70L1105 88 to 110 cm (35 to 43 inches) Brown (10YR 5/3) and yellowish brown (10YR 5/4) loamy coarse sand; single grain; loose; few clayey bridges between sand grains; abrupt wavy boundary.
- 70Lll06 110 to 126 cm (43 to 50 inches) Dark brown (10YR 4/4) gravelly coarse sand; single grain; loose; high in content of shale particles; about 1 percent greater than 3/4 inch; abrupt wavy boundary.
- 7011107 126 to 147 cm (50 to 58 inches) Grayish brown (2.5Y 5/2) and light olive brown (10YR 5/4) gravelly sand; single grain; loose; calcareous; abrupt wavy boundary.
- 70L1108 147 to 177 cm (58 to 70 inches) (Auger sample) Light brownish gray (2.5% 6/2), dark grayish brown (2.5Y 4/2) and strong brown (7.5TR 5/8) fine sand; single grain; loose; calcareous.

Remarks: Samples were collected from a pit that was dug with a backhoe.

*The B horizon in this pedon is marginal between an argillic and cambic horizon. Also, the transition zone between the fine-losser part of the B2t horizon and the sandy lower horizons

SOIL NO - - - - - S68#N-9-4


COUNTY - - - CARLTON

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SAMPLE NOS. 6811183-6811192 GENERAL METHCOS- - -14,1818,241,28 PEBRUARY 1977

		_	4,1010,6					1103.					PE					
DEPTH		N (- \$ (-	AND SIL 205	T CLAY 5- LT 22 .002	FINE CLAY LT .CCC2	VCOS	CORS	E SIZE SANC - MEDS •5- •25 - PCT	FNES .25- .10	VFNS - 10- - 05	T 2MM (~ - COSI .05	. 341. -SILT- FNSI .02 .002	341A. ) VFSI .005-	JAIB FAML TEXT SAND 21	INTR II .2- .C2	FINE CLAY TO CLAY PCT	NON- CO3- CLAY	RATI 8C1 15- BAR TO CLAY
	A] EHIR1 EHIR2 A'2X E'2A' E'21T E'22T B'31T B'32T C																	
CP CP	(PARTICL VOL. (- GT G 2 7 PCT P	E SIZE f 7: 5 CT (-	ANALYSI h 5-20 20-	IS, PM, IEIGHT - ·5 5-2 I LT 75	3R, 381 LT .C74	2C-2 PCT LT20	}{ BUL } 4A1D 1/3- BAR G/CC	K DENS 4Alh Oven Dry G/CC	11Y 1 401 COLE	( 481C 1/1C BAR PCT	- WAT 481C 1/3- BAR PCT	ER CCI 482 15- 8ar PCT	HTENT- 4C1 WRD CM/ CM/	:	CARBI 6E1B LT 2 PCT	3A1A LT .002 PCT	8C1A 1/1 H2C	8C1 1/2 CAC
	TR TR 2 2 TR 1 TR 1 TR 3 1 3 TH	000000000000000000000000000000000000000	O TR C TR TR 2 TR 2 TR 7 TR 1 TR T	TR	76 82 76 67 71 69 71 69 69	TR TR 3 3 TR 2 TR 2 TR	.97 1.32 1.40A 1.50A 1.77 1.74 1.70A 1.77	1.12 1.37 1.84 1.87	.049 .012 .013 .024 .020		46.C 26.8 17.0 15.5 16.5 17.7	10.0 5.2 4.7 3.7 7.6 8.5 8.9 9.0 9.1 8.8	.35 .29 .17 .12 .13 .15				5.2 5.5 5.6 5.5 5.3 5.7 6.6 6.9	4. 4. 4. 5. 5.
CEPTH (	CRGN N CARB PCT P	MATTER Bla ( ITG CT	) IRON C/N 6C2 Ext Fe PC1	PHOS A 651A TOTE	(EX 6N2E CA	TRACT. 6G2E MG	ABLE 84 6P2A NA	SE\$ 58 602A K	SUM EXTB / 100	ACTY 6H1A BACL TEA G	AL 6G1E KCL Ext	(CAT 5A3A Exte ACTY	EXCMI 5A6A NHAC	RATIO 801 NHAC TO CLAY	RATIO BD3 CA TO HG	CA 5F SAT NHAC PCT	(BASE 5C3 EXTB ACTY PCT	5 SAT 5 CT NHA PCT
COO-5 COS+18 COS+18 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33 COSO-33	6.4CB 1.3C .65 .15 .19 .15 .C9 9 .12 3 .12	.273 .064 .C52 .C15	23	.6 1950 .9 2900 .2 3900 .3 2700 .4 1250 .3 1950 .3 1700 .4 1250 .5 1450	11.1 3.5 2.4 2.6 6.1 7.1 7.8 7.9 8.0	1.6 1.1 1.1 1.9 4.5 5.5 6.4 6.4	.1 .1 .1 .1 .2 .2 .2 .2	.3 .2 .2 .2 .3 .3 .3	13.1 4.9 3.8 4.8 11.0 13.1 14.7 14.7	15.3 12.2 11.1 4.C 4.2 3.5 2.3 2.3 1.5	.2 1.4 1.1 .6	28.4 17.1 14.9 8.8 15.2 16.6 17.9 16.7	21.4 10.8 8.8 6.5 12.2 13.5 14.4 14.3 13.9	2.71 1.17 1.22 .63 .61 .63 .68	6.9 3.2 2.2 1.4 1.4 1.3 1.2 1.2	52 32 27 40 50 53 54 55 58	46 29 26 55 72 79 86 87	10
CEPTH	(SATURAT	ED PAS 18 8 H H2	TE) NA 4 502 6 ESP	NA 5E Sar	SALT 8DS TOTL SCLU PPP	GYP 6F1A PCT	BAIA EC MMHDS/	6NIB CA	6018 MG	SATURA 6P1A NA	ATION .6G1A K	EXTRACT 611A CC3	F 8A1- 6J1A HCG3	6K1A CL	6L1A 504	) 6M1A NC3	ATTER	BERG
CCC-5 CC5-18 C18-3C C3C-33 C33-46 C46-74 O74-91	9 4C(C				5C		.38										26D	1
ICENT 1 F	FIGATION HCRIZC		RCPHCSPH 5A 6G5 F Ext AL	ATE,PHI	0) (CIT 8 6C2A EXT FE	- 01	T) (PYR A FE+A / Clay	ROPHOSP	C FE	AL -1	EC 1/2 .AY							
		.4	.2		٠		•1			16								

 ⁽C) UG/G - PERCHLORIC ACID DIGESTION, AMMONIUM MCLYBDATE AND STANNOUS CHLORIDE ACID COLORIMETRY. ANALYSIS BY M. SINGER INSTITUTE OF AGRICULTURE, UNIVERSITY OF MINNESOTA, ST. PAUL, MINNESOTA.
 (D) LL AND PI BY SCIL MECHANICS LABORATORY, USCA-SCS, LINCOLN, NEBRASKA.
 (E) SOIL SURVEY INVESTIGATIONS UNIT, BELTSVILLE, MARYLAND.



Pedon classification: Glossic Eutroboralf; fine-loamy, mixed.

Series classification: Same.

Soil: Duluth series.

Soil No.: S68MN-9-4.

Location: Carlton County, Minnesota; NW1/4, NW1/4, Sec. 34, T. 47 N., R. 18 W.; 660 feet south and 150 feet east of the northwest section corner; about 92 deg. 30 min. west longitude and 46 deg. 31 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 40, winter normal - 12, summer normal - 65; some characteristics of precipitation in inches are mean annual - 28, May to September - 19, mean snowfall - 55.

Parent material: Reddish brown, fine-loamy glacial till of the Nickerson phase of the Superior Lobe of the Late Wisconsin glaciation.

Physiography: Central lowlands; Barnum Clay-till Area (H. E. Wright, 1972); rolling moraine with relative relief of about 100 feet.

Landscape setting: Site has a 1 percent convex north facing slope on the shoulder of a knoll. Site is on the highest part of the immediate landscape. Soils of this series are dominant in the

Vegetation: Deciduous-coniferous forest with mostly maple with few birch and aspen, all trees are 6-12 inches DBH; few hazel in understory along with considerable grasses.

Drainage: Well drained.

Erosion: None.

Ground water: Deeper than 180 cm.

Permeability: Slow.

Moisture: Moist throughout the profile.

Described by: R. Lewis and H. Finney on October 8, 1968.

Sampled by: L. Shields, G. Holmgren, R. Rust, and J. Sharp on October 8, 1968.

- B'21t 6811188 46 to 74 cm (18 to 29 inches) Dark reddish brown (5YR 3/3) loam; moderate medium and coarse prismatic structure parting to moderate medium and coarse subangular and angular blocky structure; firm; few thin and medium porous coatings of dark reddish gray (5YR 4/2) on faces of prisms; common thin and moderately thick reddish brown (5YR 3/3) clay films on faces of peds; few microroots on prism faces; very few micro discontinuous random imped simple tubular pores on faces of prisms; about 1 percent coarse fragments; gradual smooth boundary.
- B*22t 6811189 7h to 91 cm (29 to 36 inches) Dark reddish brown (5YR 3/4) to (5YR 3/3) loam; moderate medium and coarse prismatic structure parting to moderate medium angular and some subangular blocky structure; firm; few microroots on faces of prisms; very few micro discontinuous random imped simple tubular pores on faces of peds; common thin dark reddish brown (5YR 3/3) clay films on faces of prisms and very few thin clay films on blocky peds; few thin porous dark reddish gray (5YR k/2) coatings on faces of prisms; about 1 percent coarse fragments; gradual smooth boundary.
- B*31t 6811190 91 to 119 cm (36 to 47 inches) Dark reddish brown (5YR 3/4) logm; weak mostly coarse and some medium prismatic structure parting to weak medium and coarse angillar blocky structure; firm; very few very fine roots along faces of prisms; very few micro random inped tubular pores; few thin clay films on vertical faces and very few thin clay films on faces of secondary peds; about 1 percent coarse fragments; diffuse smooth boundary.
- B*32t 68L1191 119 to 163 cm (47 to 64 inches) Dark reddish brown (5YR 3/4) loam; weak medium prismatic structure parting to weak medium angular and subangular blocky structure; firm; very few very fine roots on faces of prisms; very few micro random imped tubular pores; few thin clay films on vertical faces of peds and very few thin clay films on faces of secondary peds; about 1 percent coarse fragments; diffuse smooth boundary.
- C_ 68L1192 163 to 183 cm (67 to 72 inches) Dark reddish brown (5YR 3/4) loam; weak medium platy structure; friable to firm.

SOIL CLASSIFICATION-AGUIC HAPLOBOROLL

SOIL NO - - - - - 567MN-54-4 GENERAL METHODS- - - 14,1818,241,28

COUNTY - - - NORMAN

SAMPLE NOS. 67L632-67L638

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SCIL SURVEY LABORATORY LINCOLN, NEBRASKA

FEBRUARY 1977

			2- .05			.CCC2	1	1- .5	.5- .25	-10	.05		.002	.002	21	.2- .02		CLAY	BAR
	-																		
00C-20 02C-30	AP A3		89.8	6.4 5.9	4.8		1.0		11.9	63.9 66.1	8.4 7.6	2.9	3.5 3.5			45.7 43.8			• 6: • 5
030-43	Ēí		90.4	4.7	4.5		.5		13.4	65.7	7.3	2.8	1.9		83.1	43.2			
43-69	82		93.8	2.6	3.6		.7	2.7	11.8	70.4	8.2	2.4	-2		85.6	46.1			:2
48-64	. 23		95.1	1.8	3.1		-2	1.0	7.3	74.0	12.6	1.5	.3		82.5	56.5			• 2
084-124 124-160	C1 C2		94.6 94.7	2.6 3.1	2.8		.2	1.7	8.2	64.4 56.7	21.9 25.4	2.6 3.0	:1			67.1 75.3			.3
EPTH	(PARTI	LE "ST	ZE ANA	LYSIS	, MM, 3	8, 361	, 362	) ( But			;							7 <b></b>	
	ACT.								4AlH		481C	481C	482	4C1		6E1B	3A1A	BC LA	8C 1
	GT 2	GT 75	75-20	20-5	5-2	LT .C74			DRY	COLE	1/10 BAR	1/3- Bar	15- BAR	WRD		LT	.CO2	1/1 H20	1/2 CAC
ČM.	PCT	PÇT	(	PÇT I	LT 75 -	)	LT20		G/CC		PCT	PCT	PCT			2 PCT		:==	777
00-20	ŤR	. 0	0	TR	TR	14		1.48 1.58 1.53 1.50A 1.60A											
320-30 330-43	TR	o a	0	O TR	TR Tr	13 12	TR	1.53	1-53	. 604	4-2		2.1	.15				5.5	
343-69	ŤŘ	ŏ					2	1.50A			0.2		1.0	***				5.6	
69-84	TR	Č	C			5	TR	1.60A					. 9					5.6	
84-124	TR	Ç	0	C	ŤŖ	12	TR	1.66	1.63		10.3		1.1	. 15				5.6	
124-160	TR	C	0	¢	TŘ	13	TR											5.6	
DEPTH (						(Ex			SES 58	4A)		AL 6G1D	(CAT	EXCH)	RATIO	RAT10 803	CA SF	(BASE	SAT SC1
	6ALA ORGN	6BlA NITG	C/N	6C2A EXT	651A Totl	6N2E			K		BACL	KCL	EXTE	NHAC		CA	SAT	EXTB	NHA
	CARB			FE						EXTB		EXT	ACTY		TO	TO	NHAC	ACTY	
ÇM	PCT	PCT		PCT	PCT (				MEQ	/ 100	G			}	CLAY	MG	PCT	PCT	PCT
	1.818			•		5.4	1.1	-1	• 1	6.7	2.5		9.2		1.60			69	
20-30	-62					4.2	1.1	.1	• 1 • 1	5.5 3.5	2.5		8.0 5.7	6.7 5.0	1.37	3.8		69 61	
230-43 243-69	.32					1.4	.4	::	.1	2.0	2.2		2.9	2.5	.69			69	
69-64	.67					1.2	.4			1.8	. 5		2.3	2.0	.65			78	5
84-124	.03								_										
24-160						1.6	.6	.1	TR	2.3	.7		3.0	2.4	1.09			77	9

⁽A) ESTIMATEC.

(B) B KG CF CARBON PER SQ METER TO A DEPTH OF 1 METER, METHOD 6A.

Pedon No.: S67 MN-54-4.

Area: Norman County, Minnesota

Location: NW2NE2NW2 sec. 21, T. 146 N., R. 44 W. (Sundahl Tps.)

Climate: Some characteristics of temperature in degrees F. are: annual normal - 41, winter normal - 10,

summer normal - 68; some characteristics of precipitation in inches are: mean annual - 20,

May to September - 14, mean snowfall - 35.

Vegetation: A soil-bank field dominated by grasses.

Parent material: Sandy, lacustrine sediments associated with glacial Lake Agassiz.

Physiography: Glacial Lake Agassiz plain; site occurs in sandy interbeach area between the Norcross and

Herman beach ridges.

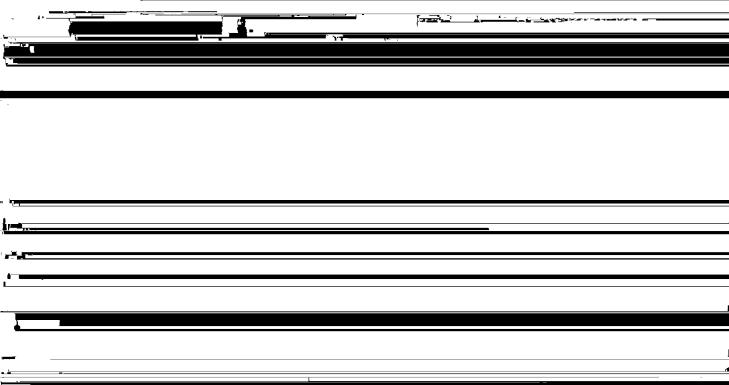
Topography: Site occurs in a gently undulating area, and it occurs near the crest of the 1 percent slope.

Drainage: Moderately well or somewhat poorly drained.

Ground water: None.

Erosion: Slight.

Permeability: Moderately rapid in the upper part, rapid in the lower part.


Moisture: Moist in the mollic epipedon, dry in the upper part of the B horizon, and moist in the lower

part of the control section.

Sampled by: R. H. Jordan, G. S. Holmgren, H. R. Finney and D. D. Barron on October 17, 1967.

Described by: H. R. Finney.

An 671632 0 to 20 cm (0 to 8 inches) Black (10YR 2/1) loamy fine sand: weak fine and medium sub-



calcareous; abrupt smooth boundary.

A5 67L633 20 to 30 cm (8 to 12 inches) Very dark gray (10YR 3/1) loamy fine sand; weak medium subangular blocky structure parting to weak fine granular structure; very friable; roots plentiful; about 10 percent yellowish brown krotovinas; noncalcareous; clear wavy boundary.

B1 67L634 30 to 43 cm (12 to 17 inches) Very dark grayish brown (10YR 3/2) ranging to brown (10YR 4/3) in parts fine sand; few fine faint dark grayish brown (10YR 4/2) mottles; weak medium subangular blocky structure: very friable: roots plentiful: about 10 percent very dark gray (10YR 3/1) krotovinas:

noncalcareous; clear wavy boundary.

IL <b>P</b>	ormdal					1116-10	LOCAT	ION S	Stev <b>e</b> ns	Count	ty, Mi	nnesota
IL NOS.	S57	7 <u>MN</u> -75-	-1	· · · · · · · · · · · · · · · · · · ·			_ LAB. 1	VO6	6085-60	91	<u>-</u>	
IL SURVE	Y LABO	RATORY	Line	oln, I	lebrask	ca.	DATE_	Septe	mber 3	1957	,	
NERAL ME	THODS	lA,	lBla.	2A1, 2			1171AN /1					<del>,</del>
RESEL	108120H	COARSE	COARSE	MEDNUM	Zing.	VERY PINE SAND	UTION (in	CLAY	7.9999	3/	2A2	TEVAN
		3.1	1-0.5		1	8, 10-0.05	0.05-0.002		0.24.07	103-0002	>2	
0-8 8-12 12-16 16-21 21-32 32-40 40-50	Ap B21 B22 B3ca Cca C1 C2	2.0 0.8a 1.6b 4.8b 2.4c 2.4b 3.7b	2.7 3.1	4.4 2.7 4.2 3.2 4.2 3.5	9.8 5.9 7.0 8.9 8.4 9.7 9.2	7.5 5.5 5.9 6.2 8.7 8.3 7.9	40.9 44.5 44.5 43.5 46.4 45.3 44.5	31.9 39.4 36.0 28.3 28.2 27.0 27.6	23.7 24.1 29.8 28.9	23.2 30.1 31.2 30.7 30.6 30.4 30.3	10 6 5	cl sicl cl/sic cl cl l/cl cl/l
	<b>9M 8</b>	Cla		NIC MA	TTER	***************************************	ELECTRI-	6Ela		MOIS	rure Ti	ENSIONS
AATU- PAIRE	1,6	1:10	6Ala DRGANIC CARBON	6Bla. MTRO- GEN	C/N	EST'S EALT (BUREAU CUP)	ELECTRI- CAL CONDUC- TIVITY EC-103 MILLIMIOS PER CM BALB.	CaCOs aquiv- alons %	OYPSUM /1904 SONL	1/10 ATMOS.	1/3 ATMOL	ATMOS.
6.5 6.9 7.4 7.9 8.1 8.2	6.7 6.9 7.8 8.8 8.8 8.8	7.2 8.1 8.7 8.9	1.25 0.99	0.250 0.126 0.105 0.063	11 10 9 9		0.4 0.5 0.6 0.5 0.5 0.6	- 1 22 22 20 22 23				
5Ala		EXTRAC	TABLE	CATIONS	5B1.a	5C1	SATU	RATION	EXTRAC	T SOLU	N.E. RAT	8a
CATION EXCILINGE CAPACITY NELAC	<b>€</b> • 6N2b	602b <b>4</b> 9	H	6P2a.	692a K	Base Sat.	6Fla	6Q1a <b>≪</b>	6Nla Ca	601a Mg		MONETUR SATU- RATION
27.8 26.7 24.3 15.0 12.8 13.7	20.0 20.7	6.2		0.1 0.1 0.1 0.2 0.2	0.4 0.3 0.2 0.2 0.1 0.2 0.1	<b>9</b> 6	0.3 0.4 0.5 0.5 0.6 0.6	0.1 0.1 - - -	1.9 2.7 3.2 2.6 2.0 2.4 2.1	1.3 1.6 1.7 1.6 1.9 2.6 2.8		56.9 59.6 57.5 47.8 51.6 50.3 51.8
Ca.C	Озсол	cretic	ns in	sand f	ractio	r concr r concr n. ction.	tions i tions i	n sand	fract fract	ion (M ion (M	n, Fei	); few

Soil classification: Udic Haploboroll; fine-loamy, mixed.

Soil: Formdale series. Soil No.: S57MN-75-1.

Location: NW NE 1/4, Sec. 1, T124N, R23W, Stevens County, Minnesota.

Topography: Gently rolling moraine - sample collected on a 3-percent slope.

Drainage and permeability: Well drained. Runoff is medium. Permeability is moderate.

Present cover: Oat stubble.

Collected by: L. T. Alexander, J. S. Allen, R. F. Dever, A. S. Robertson, August 10, 1957.

Described by: A. S. Robertson, September 3, 1957.

Ap 6085 0 to 8 inches Black (10YR 2/1) moist, heavy loam or light clay loam; friable; cloddy structure; lower boundary is abrupt and smooth.

B21 6086 8 to 12 inches Very dark grayish brown (10YR 3/2) moist, clay loam; friable; moderate medium prisms break to weak fine subangular blocks. Lower boundary is clear and smooth. A few small tongues of Ap material extend into this horizon.

B22 6087 12 to 16 inches Dark brown (10YR 3/3 to 4/3) moist, clay loam; friable; moderate medium prisms break to weak fine subangular blocks. Thin patchy clay skins occur mainly on the vertical faces of the peds. Lower boundary is clear and smooth.

B3ca 6088 16 to 21 inches Brown (10YR 5/3 to 2.5Y 5/3) moist, clay loam, very friable; weak coarse prisms break to weak very fine subangular blocks. Some evidence of thin patchy clay skins on vertical faces of prisms. Lower boundary is clear and smooth. Strong to violent effervescence with dilute HCl.



SOIL CLASSIFICATION Udic Haploboroll; fine	e-loamy, mixed
SOIL Formdale æries_	LOCATION Stevens County, Minnesota
SOIL No.: S57MN-75-2	LAB. NO: 6092-6099
SOIL SURVEY LABORATORY Lincoln, Nebraska	DATE_ September 3, 1957

GENERAL METHODS 1A, 1Bla, 2A1, 2B

İ	t		, <b>-</b>	PARTI	CLE SIZ	E DISTRIE	UTION (in	mm.) (p	r cent)	3A	1	,
RECEN	HORIZON	COARSE SAMD	CÖARSE SAND	MEDIUM SAND	FINE	VERY FINE SAMD	SILT	CLAY			2A2 > 2	TEXTUR
		21	1-0.5	0.5-0.25	0.25-0.10	0.10-0.03	0.05-0.002	< 0.002	0.2-0.02	003-0003		
0-7	Αp	2.6	3.4	4.3	10.8	8.3	35.5	35.1	31.0	19.2	ı	cl
7-12	B21	2.6a		4.3	10.0	9.0	33.4	37.6				cl
12-15	B22	2.5b		3.9	9.2		34.2	38.8	27.6	20.4	•	cl
15-22	Cca	4.6b		3.7	8.6		37.2	34.1	25.1		11	cl
22-29	Cca2	3.7b		3.9	8.6		38.2	33.9				cl.
29-37	Cl	3.7b	3.3	3.7	8.7	8.4	40.0	32.2	27.3	26.5		cl
37-47	C2 ;	2.9b	3.4	3.8	9.0		41.2	31.1	28.5			cl
47-60	C3 .	4.1b	3.3	3.4	8.1	8.3	43.7	29.1	29.6	27.2	7	cl
	рН 8	Cla	ORG/	MIC WY	TTER		ELECTRI-	6Ela	1	MOIST	URE T	NSION\$
SATU-			6Ala			ESTX SALT	CAL CONDUC- TIVITY EC * 103	CeCO ₃	GYPSUM	1/10	1/3	
SATU- RATED PASTE	1:5	1:76	DRGANIC CARBON	GEN	C/N	(BUREAU CUP)	MILLIMHOS	equiv- alent	GYPSUM me,/190 ₉ . SOIL	ATMOS.	ATMOS.	ATMOS.
			*	*			PER CM . SALA	*		*	*	*
7.2	7.3	7.4	3.17	0.284	11		0.5	i -				
7.1	7.2	7.2	1.04				0.5	-	!			
7.5	7.9	8.1	0.84	0.085	10		0.6	4	,			
B.O	8.6	8.9	0.51	0.056	9		0.5	29	1			
8.1	8.7	8.9	0.46				0.5	26		,		,
8.1	8.8	8.9	0.36		]		0.5	26	Ī			
8.2	8.9	9.0	0.28				0.5	26	,	1		
8.3	8,8	8.9	0.23			1	0.5	26				ļ
	************		***************************************					Newson and a second			orificial colonians	
5Ala.	6N2b	602b	TABLE	6P2a	5B1a 602a	Base	6Pla	RATION SQLa	6Nla	601a	E BAL	8a Moistur
CHANGE LPACITY	Ca	Me	м	No	K	Sat.	No	ĸ	Ca.	Mg		SATU- RATIO
EQ ₄ Ac		mi [liequiv	alents per	100g, self		%		iupolijim –	volents pe	r liter —		**************************************
20.7				•	0.6	70	0.3	0.1	3.0	1.8		57.3
30.1 25.5	23.9 18.2	7.7 8.1		0.1	0.3		0.3	0.1	3.0 2.0	1.8		54.2
24.7	10.9	. 0.1		0.1	0.3		0.4	0.1	2.7	2.1		58.2
14.3				0.1	0.2		0.5	0.1	2.0	1.8	:	50.8
14.5	ļ <u></u>			0.1	0.1		0.5	_	1.7	2.0		52.1
13.9	[ ]			0.1	0.1		0.5	- 1	1.7	2.9	,	55.0
13.6				0.1	0.1		0.6	-	1.4	2.2		52.8
L3.8				0.2	0.2		0.5	0.1	1.0	2,6		52.8
						į						
ı. Fe	w blac	k and	dark b	rown i	rregul	ar conci	etions	in san	d frac	tion (	Mn, Fe	?).
	L. C.C.C.	- cond	retion	s in s	and fri	action:	few bla	lok and	dark	hmorm	irremi	1000
b. Fe	w cacci	3	- 00101			, Fe?).		cas carre	con in	OT OMIT	TT T 080	Tar.

Soil classification: Udic Haploboroll; fine-loamy, mixed.

Soil: Formdale series .

Soil No.: S57MN-75-2.

Location: SW NE 1/4 Sec. 13, T125N, R42W, Stevens County, Minnesota.

Topography: Gently rolling to rolling moraine. Sample was collected on a 6-percent slope - north facing.

Drainage and permeability: Well drained shading to moderately well drained. Runoff is medium, permeability is moderate (may be moderately slow in C horizon).

Present cover: Oat stubble.

Collected by: L. T. Alexander, J. S. Allen, R. F. Dever, and A. S. Robertson, August 11, 1957.

Described by: A. S. Robertson.

Ap 6092 0 to 7 inches. Black (10YR 2/1) moist, light clay loam; friable; weak very fine and fine granular structure; lower boundary is abrupt and smooth.

B21 6093 7 to 12 inches. Very dark grayish brown to dark brown (10YR 3/2 to 3/3) moist, clay loam; friable;

tongues of Ap material extend into this horizon. Dark gray wormcasts are common. Lower boundary is clear and wavy.

B22 6094 12 to 15 inches. Dark brown to olive brown (10YR 4/3 to 2.5Y 4/4) moist, clay loam; friable; slightly plastic when wet; moderate to strong medium prisms break to moderate fine and medium blocks; nearly continuous clay skins on all ped faces; lower boundary is clear and smooth. The soil mass does not efferwesce with HCl, but there are small spots which do and these are variable in extent. Some tongues of Ap material extend into this horizon. There are also a few dark gray wormcasts.

Cca 6095 15 to 22 inches. Dark grayish brown (10YR 4/2 to 2.5Y 4/2) moist, clay loam; friable; massive; violent reaction to HCl. Lime is segregated in threads and seams and soft concretions. Lower boundary is gradual and wayy.

Cca2 6096 22 to 29 inches. Dark grayish brown (10YR 4/2 to 2.5Y 4/2) moist, clay loam; friable to firm; massive with tendency to weak fine subangular blocks; lime is segregated in threads, seams and soft lime concretions; reacts violently with HCl.

Cl 6097 29 to 37 inches. Olive brown and light olive brown (2.5Y 4/4 and 2.5Y 5/4) moist, clay loam; friable to firm; massive or weak fine subangular blocks; lime is generally disseminated but some exists in threads; reacts violently with HCl.

C2 6098 37 to 47 inches. Olive brown (2.5Y 4/4) moist, with a few small faint mottles of light olive brown; clay loam; massive structure but horizontal cleavage is noticeable; friable to firm; lime is generally disseminated but some exists in threads; reacts violently to HCl.

C3 6099 47 to 60 inches. Light clive brown to grayish brown (2.5Y 5/4 to 5/2) moist, clay loam; friable to firm; massive structure but horizontal cleavage is noticeable; lime is generally disseminated but some exists in threads; reacts violently with HCl.

Remarks: This pedon developed in calcareous friable to firm clay loam till of late Wisconsin (Mankato) age. A few stones and small pebbles occurred on the surface and throughout the pedon. Roots were numerous in the A and B horizons but only a few were observed in the C horizons. Bleached sand grains were observed in the A horizon.

U. S. DEPARTMENT OF AGRICULTURE SDIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - 569MN-7-2

COUNTY - - - BLUE EARTH

GENERAL METHODS- - - 1A. 1818. 241

GENERAL				,	, _				1100	_					JLX 1976				
DEPTH	HORE										0-691.93						<del></del>		
DEFIN	HORI	ZUN	(				,	PARIL	FF 2141	E ANAL	A212*	LT ZAM	, 3Al,	3AlA,	SALE				)RAT
			SAND	C T 1 T		FINE	`ven		SAND -	·		/\	-21F1-		) PARL	INIK			
			2-			CLAY			WEDS							11		C03-	
							2-					-05		- 005			TO	CLAY	BA
CM			(			-0002		.5	•25 PCI	.10 [ LT 2			- 002	-002	2-+1	.02	CLAY ) PCT	PCT	CLA
																			~
00-20 20-33	AP Alz		12.8				0.4			5-1	4.6			14.4			60		Q.
20-33 3 <b>3-</b> 56	A12		11.9				0.6			5.0	3.8				8-1		60		٥.
33-30 56-79	81		12.2				0.2			4.9	4-8			15.2		15.8	60		٥.
79-99	282		11.9				0.8			4.4	4.2		38.3	17.3			58		0.
99-127			21.5				0.8			8.5	7.2				14.3		54		0.
			24.4				1.5			9.6	6.1					22.2			0.
27-152	262		24+ D	43.9	26.5	8.8	1.5	3.4	4.4	11.4	8.5	11.2	32.4	12.2	21.1	27.2	33		0.
EFIN						38, 381						WAT 481C		ATENT-			DNATE BALA		
	GT	`GT			5-2			1/3-			1/10			WRD		LT	LT	1/1	17
	2	75				.074			DRY		BAR	BAR	BAR	CH/		2	+002		ČÁ
CM	PCT		(	- PCT	LT 75	)					PCT	PCT	PÇT	CM		PCT	PC T		
00-zo	TR		0		TR TR	96		1.108					17.9					5.3	
20-33	TR	ŏ			TR	90		1.19	1.44	.066	38.9	36.7		0.21				5.5	
33-56	TR	ŏ	ň	ŏ	TR	9Ϊ		1.16	1.54	.099			19.7		0.60			5.6	
56-79	ŤŘ	ŏ	ŏ	0	TR	9î		1.23			35.2			0.16	****			5.7	
79-99	TR	ŏ	TR	TŘ	î	82		1.308		****	JJ.L		20.0	****				6-8	
99-127		ŏ	TR	TR	TR	80		1.37	1.48	-027	31.3	29.5	16.3	0.18		15		7.8	
27-152		ō	TR	TR	ï	74		1-408					15.2			12		7.8	
EPTH (1	ORGANI	C MAT	TER )	IRON	PHOS	(EX	TRACT	ABLE A	ASES SE	14A1	ACTY	AL	ICAT	EXCH)	PATIO	RATIO	CA	(BASI	E SA
	GALA			6C2B		6N2E						6G10		5A6A	8D1	8D3	5F	5C3	5C
	ORGN	NITG		EXT	TOTL		MG			SUM	BACL		EXT8	NHAC	NHAC	CA	SAT	EXTB	NH
	CARB			FE						EXTB	TEA	EXT	ACTY		TO	to	NHAC	ACTY	
CM	PCT	PCT		PCT	PCT	(			MEC					:	CLAY	MG	PCT	PCT	PC.
000-20	3.250																		
20-33	3.30																		
33-56																			
56-79		0.10	9 8																
79-99																			
99-127																			
27-152	0.14																		
foru (							CYP	(			FATUR	ATTON 1						ATTEN	See.
EPTH (	SATUR 8El 8		BA	NA 5D2	NA SE			BALA										4F1	
	REST		H20	ESP	SAR	TOTL	UI 1A	EC	CA			K	C03			504	NO3	LOID	
	CHM-		1120	LJF	341	SOLU		MMHGS/	40	70	***					304	1103	LMIT	
CM	CM		PCT	PCT			PCT		ı – – -			- MEQ .	/ LITE				:		
																	·		
00-20																			
20-33																			
33-56																			
56-79	2002																		
79-99	2000																		
99-127		7.5																	
27-152	2000	.7.5																	
NALYSE	S BY M	INNES	TA AC	I CIR T	URAL F	XPERIME	NT ST	ATION-	(A)	BULK !	ENSIT	Y AND	ATER C	ONTENT	ANAL'	ISES BY	THE S	SOIL S	JRVE
		MINE	RALOGY	BY X-	RAY AN	ALYSIS.	TOT			INVEST	FIGATIO	DNS UN	IT, LII	COLN,	NE.	JNLESS	OTHER		

PHOSPHORUS BY NITRIC-PERCHEDRIC DIGES PHOSPHORUS BY BRAY'S NO 1 EXTRACTANT.

DEPTH	MONT VERM ILLITE KAOL QUARTZ	TOTAL P	P
	()	(L85	/A}
000-20		1296	27
020-33			27
033-56		1028	6
056-79		730	1
079-99			2
099-127		844	1
127-152			1

- CATEO REMAINING AMALYSES BY THE SOIL SURVEY INVESTIGATIONS
  UNIT, BELTSVILLE, MD.

  (B) ESTIMATED.

  (C) MICRO-PENETRATION RESISTANCE A ROO 0.6 CM DIA IS SLOWLY
  PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10-BAR, A
  DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE
  FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE
  CTAREMETM. STRENGTH.
  (D) DRGANIC CARBON IS 22 KG/M SQ TO A DEPTH OF 1 M (6A).

Peden classification: Aquic Hapludell; fine, montmorillonitic, mesic. Series classification: Same .

Scil: Guckeen series .

Soil No.: S69MN-7-2.

cation: Blue Barth County, Mirmesota; SEL/4 of SWL/4, Sec. 23, T. 105 N., R. 28 W. (Shelby Twp.); about 240 feet east and 1,000 feet north of southwest section corner. About 94 deg. 10 min. west longitude and 43 deg. 53 min. north latitude.

Climate: Hamid continental. Some characteristics of temperature in deg. F. are: annual normal - 26, winter normal - 17, some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal annual snowfall - 40.

Parent material: Moderately shallow, fine textured lacustrine sediments over grayish, calcareous, loss till (New 18m) Des Moines tobe Late Washenders

losm till (New Vim) Des Moines Lobe, Late Wisconsin age. hyelography: Central lowlends; glacial Lake Minnesota Flain in the Elue Earth Till Flain of H. E.

Physiography:

Wright (1972).

Landscape setting: About 3 percent slightly convex east faring slope. General topography is nearly level to gently undulating. Relative relief is about 10 feet in the immediate area. Elevation is about 1,045 feet. Major associated soils on the landscape near this site are of the Lara, Marna, and Kamrer series

Vegetation: Recently plowed out field; native vegetation was tall grass prairie.

Drainage: Lower moderately well drained.

Slight.

Permeability: Moderately slow in upper part, moderate in the glacial till. Described by: R. J. Edwards and H. R. Firmsy on October 20, 1969.

Sampled by: L. Shields, R. J. Edwards, J. J. Murray, J. F. Cummins, and H. R. Finney on October 20, 1969.

69B773 0 to 20 cm (0 to 8 inches). Black (10YR 2/1) heavy silty clay loam; weak very fine subsngular blocky structure; friable, plastic and sticky; common roots; abrupt smooth boundary.

12 69B77% 20 to 33 cm (8 to 13 inches). Black (10TR 2/1) silty clay or heavy silty clay losm; very dark gray (10TR 3/1) rubbed; moderate very fine and fine angular and subangular blocky structure; friable, plastic and sticky; common roots; clear smooth boundary.

69B775 33 to 56 cm (13 to 22 inches). Very dark brown (10TR 2/2) and very dark grayish brown (10TR 3/2) stilty clay, black (10TR 2/1) ped coatings; moderate very fine and fine angular and sub-

1 69B776 56 to 79 cm (22 to 31 inches). Dark grayish brown (2.5% h/3) silty clay, dark grayish brown (10TR 1/2) and very dark grayish brown (10TR 3/2) ped coatings; moderate fine and medium prismatic structure parting to moderate fine and medium angular and subangular blocky structure; friable, plastic and sticky; common black (10TR 2/1) wormcasts; about 1 percent coarse fragments; clear smooth boundary.

132 698777 79 to 99 cm (31 to 39 inches). Dark grayish brown (2.51 4/2) clay loam; few fine faint grayish brown (2.57 5/4) mottles; weak to moderate fine and medium prismatic structure parting to weak fine and medium subangular blocky structure; friable, slightly plastic and sticky; about 5 percent coarse fragments; clear smooth boundary.

ICL 69B778 99 to 127 cm (39 to 50 inches). Grayish brown (2.57 5/2) light clay loam; many medium prominent light office brown (2.57 5/4) mottles; weak fine and medium subangular blocky structure with some weak platy primary structure; friable, slightly plastic and sticky; about 5 percent coarse fragments; about 5 percent soft lime masses; strongly effervescent; clear smooth boundary.

.698779 127 to 152 cm (50 to 60 inches). Light olive brown (2.57 5/h) loams many coarse nrom

SOIL Hibbing series

SOIL Nos. S64Minn-69-2 LOCATION Saint Louis County Minnesota

SOIL SURVEY LABORATORY _ Lincoln, Nebraska

0.06 0.49 0.05 0.39 0.05 0.30 0.05 0.27 0.03 0.29 0.03 0.31

0.03 0.35 0.03 0.35 0.03 0.35

0.99 0.62

0.45 0.40 0.45 0.52 0.51

0.50 0.49 0.47

2-2-5 2-5 5-7 7-8 8-11 11

11-16 16-22 22-34 34-48 48-60 _____ LAB. Nos. 19818-19828

			Total		1				iss and part			,	- 3A	1				
			IBTOI					Sand		s	ilt _					Coa	rse fragen	enta 2
Depth (in.)	Horizon	\$and (2-0.05)	Silt (0.05– 0.002)	Clay ( < 0.002)	Very coarse (2-1)	Coarse (1-0.5)	Medium (0.50.25	Fine (0.25-0.1	Very fine (0.1–0.05		Int. III 2 (0.02–	Int. II (0.20.02	(2-0.1)	<0.074	0.005 0.002	Vol.	1	3B1 Vt.
_	-		,	•			1.01 - 2		<u> </u>	<u> </u>	0.002					19-2	19-2	
12-0	AO		١., .	l		l	l		l .	T		1 _	_				tr	7
0-2歳 2 <b>}-</b> 5	Al A2	36.8 33.0	46.0	18.8	2.2 3.2	6.4 5.8	6.8 5.6	13.1 10.7	8.3 7.7	12.9 13.8	31.5 32.2	28.5 27.5	25.3	67.6 71.3	11.2	3	2 5	
5-7 7-8	B2 A'2	35.9 33.9	45.5 48.4	18.6	3.9 3.4	6.6 5.9	6.0 5.5	11.3 11.0	8.1	13.0 13.0	32.5 35.4	27.4	25.8	68.7 70.7	13.0 14.3		9 7	
<u>8-11</u> 11-16	A'2&B'2 B'21	22.1 16.7	40.4	37.5 49.5	2.1	3.7	3.6	7.2	5.5 4.0	9.5	30.9 26.4	19.0 14.3	16.6 12.7	81.2	13.3	2	4 2	+
16-22 22-34	B'22 B'23	17.0 18.2	33.8 38.2 38.6	44.8 43.2	2.0 1.3 2.2	2.7 3.0 3.0	2.7 2.7 2.9	5.3 5.4 5.7	4.6	7.4 8.5 9.0	29.7	16.1	12.4	85.6	13.3 13.8 15.5	5	4 3	
34-48	C1	18.6	38.4	43.0	1.5	3.6	3.1	5.9	4.5	8.9	29.5	16.7	14.1	84.1	13.9	5	8	
+8-60+	cs	16.5	39.6	43.9	1.6	2.9	2.6	5.2	4.2	9.2	30.4	16.3	12.3	86.1	15.2	1	2	
	6Ala	6B1a			6E2a	602a	L	Bulk densit		4D1		Vater conte		l l.m.	3A1b		рH	10-
Cepth (in.)	Organic carbon	Nitrogen	C/N		Carbonate as CaCO _N	Ext. Iron	4Ala Field	4A1d 1/3-	4Alb	COLE	484 Field	4Blc 1/3-	4B2 15-	4C1  1/3-to	Fine Clay			8c:
<b>(</b> )	1 *******				as Georg	as	State	Bar	Dry		State	Bar			Ø.‱	!		u.
	Pct.	Pct.			Pet.	Fe Pot.	g/oc	g/cc	g/cc		Pct.	Pct.	Pct.	in./ir	mm. .Pct.			
<u>}</u> -0,	20.9		al.			1.1							٠,					4.
0-2출 날-5	4.∞   1.71	0.166 0.083	24 21			1.0	1.60a	1.58a	1.59a	0.003a	12.0	14.6a	9.3 8.2	0.10				4
5-7	0.61	0.043	14			0.9							5.6	0,14				4
7-8 8-11	0.39	0.028 0.035				0.9 1.3	1 77	1 77	1.80	0.007	15.6	15.2	4.8 11.0	0.07				4
11-16	0,32	0.030				1.5	1.77 1.68	1.61		0.036	17.1		14.6	0.09				5
16-22	0.08				-(s)	1.5	1.74	1.62	1.80	0.036	15.9		13.8	0.10	11.0			6.
22-74 34-48	0.10				-(s)	1.5	1.76			0.028	15.3	18.8	15.2	0.06				7.
18-60	0.10				-(s)		1.74			0.032	16.7 17.3		15.1 15.5	0.09				7.
•		Extractab	le bases	5Bla	<u>.                                    </u>	била.	Cat.E	tch.Ca	.6Gld	<u> </u>	<u> </u>				803 [	-	Base sat	uratio
Depth	6N2a	602a	6P2a	692a		Ext.	5A3a	5Ala	KC1-								5C3	5C.
(in.)	Ca	Mg	Na	ĸ	Sum	Aciditz	Sum Cation:	NH ₁₄ OA o	Ext.						Ca./Mg		Sum Ostdions	NH)
	<del>-</del>			! 	meg/1 <u>00</u> g	·	l	l 	<b>&gt;</b>								Pct.	Pct
}-0 0-2ੇੂ	2.3	1.3	0.1	0.3		21.5	25.5	18.7	4.6						1.8		16	2
<u>1</u> -5	1.1	0.9	0.1	0.2			18.8 12.8	13.0 8.3	4.6 2.8								12 16	_;
5-7 7-8	0.9	1.0	0.1	0.1	2.4	10.7 8.5	10.9	7.0	2.0						1.0		55	3
8-11	5.0	4.8	0.2	0.3	10,3	12.6	22.9	16.7	2.5						1.0		45	-
.1-16 .6-22	10.0	9.4 10.8	0.5	0.4	20.3	12.2 4.5	32.5 28.5	25.8	2.0						1.1		62 84	10
22-34 22-34	11.8	10.4	0.7	0.4	23.3	4.7	20.5	22.9 21.8							1.1		04	10
34-48	11.6	10.2	0.8	0.4	23.0			20.9							1.1			1.3
<del>1</del> 8-60	11.3	10.1	0.9	0.4	22.7			20.5							1.1			1.
	Ratios t	o Clay	8D1				01 ±	<b>.</b>										
Depth (In.)	NH _{LL} OAc CEC	Ext. Iron	15-Bar Water			a.	≥ta to	7 inch	ies.									
\$-0 0-2計 計-5	0.99	0.06	0.49															

Soil classification: Typic Eutroboralf; fine, mixed. Soil: Hibbing series.

Soil No.: S64MN-69-2.

Location: St. Louis County, Minnesota. T58N, R18W, Section 29. Sw. Approximately 700 feet northwest from south side of section 29 along county road No. 101 and 330 feet northeast along woods trail.

Vegetation and use: Mixed stand of balsam fir, white spruce, birch and aspen. Woodland.
Slope and land form: Gently sloping (3 percent). Northwest aspect. In an area of rolling moraine.
Drainage and permeability: Well drained with medium runoff and moderately slow internal drainage: moderately slow permeability.

Parent material: Calcareous red clay till.
Samples collected by: R. H. Jordan, D. McMurtry, F. M. Scilley, R. S. Farnham, R. Lewis, August 27, 1964.
Profile described by: R. Lewis, F. M. Scilley and R. S. Farnham, August 27, 1964. Colors are for the moist soil.

Horizon and Lincoln Lab. No.

1 to 0 inches. Leaves, roots and partly decomposed leaf mold. ΔO 19818

0 to 2½ inches. Dark gray (10TR4/1) silt loam; weak fine granular structure; friable when moist; many 19819 roots; some mixing by worms; numerous bleached sand grains; clear smooth boundary.

2½ to 5 inches. Grayish brown (10YR5/2) silt loam; weak to moderate thin platy structure; friable when 19820 moist; numerous roots; much mixing of dark surface; clear smooth boundary.

5 to 7 inches. Brown (10YR5/3) silt loam; weak thin platy structure; friable when moist; numerous

19821 roots; porous; abrupt wavy boundary.

7 to 8 inches. Brown (7.5YR5/2) silt loam; moderate thin platy structure; friable when moist; numerous A12

19822 roots: porous: abrupt smooth boundary.

A'2 & B'2 8 to 11 inches. Pinkish gray (7.5YR6/2) and reddish brown (5YR5/3) silt loam and silty clay; moderate 19823 fine to medium subangular blocky structure; firm when moist, slightly plastic when wet; common roots; clear wavy boundary.

when moist, plastic when wet; common roots; thin patchy clay flows on some vertical ped faces; gradual smooth boundary. B121 19824

16 to 22 inches. Reddish brown (5YR4/3) clay; strong fine to medium angular blocky structure; very firm when moist, plastic when wet; moderately thick clay flows on both vertical and horizontal ped B'22 19825 faces: gradual smooth boundary.

22 to 34 inches. Reddish brown (5TR4/3) clay; weak medium prismatic structure breaking to strong fine to medium angular blocky structure; very firm when moist, plastic when wet; few roots; moderately thick clay flows on vertical ped faces and along vertical cleavage planes; gradual smooth boundary. B123 19826

34 to 48 inches. Reddish brown (5YR4/3) clay; weak medium prismatic structure breaks to moderate fine to medium angular blocky structure; very firm when moist, plastic when wet; very few roots; slight effervescence with acid; thin clay flows in pores; gradual smooth boundary. 19827

C2 48 to 60+inches. Reddish brown (5YR5/3) clay; massive to weak fine angular blocky structure; very firm 19828 when moist, plastic when wet; few black coatings in pores and root channels; weak effervescence with

Remarks: Nearly dry when sampled.

14

VΞ

Soil temperatures: Depth (inches) Temperature 12° C. 12° C. 20 30 10° C. 40 60

Mineralogy (Methods 7A2 and 7B1). The clay contains mica, feldspar, amphibole, kaolinite, montmorillonite, quartz, vermiculite and chlorite in decreasing order of abundance. All are well crystallized except the montmorillonite which is fairly well crystallized. The first six components are present in moderate amounts. The vermiculite and chlorite are present in small amounts together with interstratified chlorite-vermiculite. Mineralogy is mixed. Quartz dominates the fine silt, but moderate amounts of well-crystallized kaolinite, feldspar, and mica are present with leasan communication objects are present with leasan communications of the communication of the co SOIL Hibbing taxadiunct SOIL Nos. S64Minn-69-1 LOCATION Saint Louis County, Minnesota

SOIL SURVEY LABORATORY Lincoln. Nebraska

_____ LAB. Nos. <u>19807-19817</u>

June 1968

GENERAL.	METHODS:	1Δ.	1815.	247.	2B
GENERAL	THE THOUGH	وعبيد	TDIO	وعمت	دے

GENERAL	METHODS:	1A,	IBID,	2AI, 2	2.8													
			Total						s and parti			3A1						
			I			ı —		Sand		Si	it I	·					se fragme	
Depth	Horizon	Sand	Silt	Clay	Very	Coarse	Medium	Fine	Very fine	,	Int. III	Int. 🎞			0.005-	382		Bl '
(ln.)		(2-0.05)	(0.05- 0.002)	( < 0 002)	coarse (2-1)	(1-0.5)	(0.5-0.25)	(0.25-0.1)	(0.1-0.05)	0.05-0.02	(0.02-	(0.2-0.02)	(2-0.1)	<b>&lt;0.07</b> 4	0.002	Vol.		t.
			0.002)	l '	(2-1)				ľ	ı	0.002)	Γ	`			19-2	19-2	
~ ~	AO	=			_	Pc	i. of =< 2	MW	,		_				-	← Pct		<u> 19–</u>
5-0		25.0			١,,,	- 0		١.,,	١., ,			1 400	۰	<b>.</b>	١.,.	L 1.	tr	
0-5	A21	35.0	55.1 48.0	9.9	2.3	5.8	5.7 6.4	10.1	11.1	26.8	28.3	43.2	23.9	73.1 68.8	10.1	4	7	
5-7	B2	40.3		11.7	2.5	5.5		12.8	13.1	24.5	23.5	44.4	27.2		11.9		4	₩.
7-9	A'2	36.1	45.9	18.0	2.6	5.3	6.0	12.1	10.1	16.8	29.1	33.5	26.0	70.2	10.7	I 1.	7	
9-14	A'2&B'2 B'2l	29.4	37.6	33.0 43.7	3.0	5.0	4.9 4.5	9.8	6.7	10.9	26.7	22.9 18.7	22.7	74.5	10.4	4	7	
14-21	B'22		29.4		2.7	4.9		9.0	5.8		21.3		21.1	10.3	8.5	1	3	-
21-30		22.3	35.0	42.7	1.8	4.8	3.9	7.4	5.0	8.4	26.6	17.5	17.3	76.0	12.1	3	5	
30-38 38-48	B'3	27.3	35.1 36.0	37.6	2.0	4.4	4.9 4.2	9.6	6.0	9.3 8.4	25.8 27.6	20.5	21.3 18.9	78.9	11.3	3 3	5	
48-60	<b>G</b> 5		36.6	40.1		4.5	4.1		5.1 5.2	8.8		18.2	18,1		12.8	1 4		<del>                                     </del>
60-65+		23.3			1.9	4.4	4.2	7.6			27.8	18.1	18.6	79.7		l ž	6	
00-05+	C3	23.7	37.1	39.2	2.5	4.4	4.2	7.5	5.1	9.0	20.1	10.1	10.0	79.3	13.1	~	+	
_		(22		<del></del>	/ / 70	(00	<u>.                                    </u>	Bulk densit		4D1	<u> </u>	ater conte		,	<del>                                     </del>	<del>                                     </del>	pH .	
	6Ala	6Bla		l	6E2a	6C2a Ext.	4Ala	4Ald	4Alb	1 4DI		4Blc	4B2	4C1		8стр	pn pn	8Cla
Depth	Organic	Nitrogen	C/N		Carbonate	Iron	Field-		Air-		Field-			1/3- to		Sat.		10012
(in.)	carbon				as CaCO ₃	as	State	Bar	Dry	COLE	State			15-Bar		Paste		(1:1)
						Fe Te	State	Dat	Dry	COLLE	D. C. C.	Day	Der	17-1002		14500		
	Pct.	Pct.			Pct.	Pct.	£/cc	g/cc	g/cc		Pct.	Pct.	Pct.	in/in.				
2-0	23.7				1 447	100.		<b>8</b> 7.50	-		100	744		1114 1 1114				
0-5	0.64	0.059	11			0.8	1.66	1.646	1.64	۱_	10.5	16.0	3.7	0,190	ļ,			4.7
5-7	0.37	,			ľ	0.6					/		4.6		ľ			4.9
7-9	0.25					0.7							5.7					5.0
9-14	0.32					1.0	1,84	1.81	1.85	0.007	14.5	15.3	10.5	0.09				4.9
14-21	0.31					1.3	1.65	1.50		0.051	18.1	24.3	13.5	0.16				4.9
21-30	0.18					1.4	1.78	1.66		0.035	15.3	18.9	12.4	0.11				5.5
30-38	0.11				-(s)	1.3	1.81	1.71	1.83		13.8	17.2	12.7	0.08				6.9
38-48	0.12				-(s)	1.3	1.77	1.67		0.023	15.8	19.0	14.1	0.08		6,5		7.5
48-60	0,09				-(s)	1.3	1.76	1.69	1.80	0.019	15.9	18.6	14.1	0.08				7.6
60-65+	0,12				-(s)	1.3	l '	-		-			14.3					7.9
										<u> </u>		<u> </u>						<u> </u>
		Extractab	le beses	5Bla	1	6нца	Cat.E	сећ Сар	6Gld			8E1	8Bla	8B	8D5	8D3	Base sat	
	6n2a	602a	6P2a	692a		Ext.	5A3a	5Ala	KCl-			Resis-	Elec.	Water	Est.		5¢3	5C1
Depth (in.)						Acid-	Sum		Ext.			tivity	Cond.	at		Ca/Mg	Sum	NTH4OAc
(111.)	Ca	Mg	Na	K	Sum	ity	Cattions	NH _L CAc	A1					Sat.	salt in		Celtione	CEC
								`				ohms-	mmhos,	ľ	soil			
	-				meq/100 g			. ÷	->			cm.	cm	Pct.	ppm.		Pct.	Pct.
2-0								ارما	_ ,									Ι.
0-5	1.2	0.5	tr	0.4	2.1	7-7	9.8	6.7	1.4								51	31
5-7	1.1	0.7	0.1	0.1	2.0	7.4	9.4	6.5	1.9			ļ.,				1 1	21	31
7-9	1.8	1.3	0.1	0.1	3.3	8.1	11.4	8.1	2,4							1.4	29	41
9-14	4.6	4.1	0.3	0.3	9.3	11.0	20.3	15.1	2.8							1.1	46	62
14-21	8.7 10.4	7.7	0.5	0.4	17.3	12.2	29.5	22.9	2.5 0.8							1.1	59	76
21-30	10.4	8.5	0.5	0.4	19.7	7.5 3.8	27.2	21.3	0.0							1.2	72 84	92
30-38 38-48		9.2	0.6	0.3	20.7 21.8	3.0	24.5	19.4 19.6				31.00	0.00	20 -	300	1.3	04	107
30=46 48-60	11.7	8.2		0.3				18.8				2100	0.30	38.5	190	1.3		111
40-60 60 <b>-</b> 65+	11.1	7.8	0.6	0.4	20.6											1.4   1.4		110
00 <del>=</del> 05+		7.0	0.0	J.#	19.9			17.9								1.4		111
	Ratios t	0.016	: BD1							L					_	L		<u> </u>
	TOTOTOR P	A CTS	UUL	l l				,	1									

	Ratios t	o Clay	BD1	
Depth (in.)	NH _L OAc CEC		15-Bar Water	
2-0 0-5	0.67	0.08	0.37	
5 <b>-</b> 7	0.56	0.05	0.39	
7-9	0.45	0.04	0.32	
9-14	0.46	0.03	0.32	
14-21	0.52	0.03	0.31	
21-30	0.50	0.03	0.29	
30-38	0.52	0.03	0.34	
38-48 48-60	0.49	0.03	0.35	
	0.47	0.03	0.35	
60-65+	0.46	0.03	0.36	

a. 1/10-bar (Method 4Alg). b. 1/10- to 15-bar (Method 4C2). c. 1/10-bar (Method 4Blc).

Pedon classification: Eutric Glossoborali; fine, mixed. Series classification: Typic Eutroboralfs; fine, mixed.

Soil: Hibbing taxadjunct.

Soil No: S64 MN-69-1.

Location: St. Louis County, Minnesota. T57N, R18W, Section 6, SE4, 980 feet west and 180 feet north of SE corner. Vegetation and use: Jack pine and white spruce grove in corner of pasture. Understory is mainly bluegrass. Slope and land form: Very gently sloping (2 percent). Southwest aspect. In an area of gently undulating ground moraine.

Drainage and permeability: Well drained with medium runoff and moderately slow internal drainage. Moderately slow permeability.
Parent material: Calcareous red clay till.

Samples collected by: R. H. Jordan, D. McMurtry, F. M. Scilley, R. S. Farnham, R. Lewis, August 27, 1964. Profile described by: R. Lewis, F. M. Scilley and R. S. Farnham, August 27, 1964. Colors are for the moist soil.

## Horizon and Lincoln Lab. No.

AO 2 to 0 inches. Undecomposed leaves, roots and twigs; abrupt smooth boundary. 19807

A21 0 to 5 inches. Grayish brown (10YR5/2) silt loam; moderate thin to medium platy structure; friable 19808 when moist; many roots; abrupt wavy boundary.

5 to 7 inches. Brown (10YR5/3) silt loam; weak very thin platy structure; friable when moist; numerous 19809 roots; abrupt smooth boundary.

A12 7 to 9 inches. Light brownish gray (10YR6/2) silt loam; moderate thin platy; friable when moist; 19810 numerous roots; abrupt wavy boundary.

A12 & B12 9 to 14 inches. Pale brown (10YR6/3) and reddish brown (5YR4/4) silt loam and silty clay; vertical 19811 cleavage gives the appearance of weak coarse prismatic structure which breaks to moderate medium subangular blocky structure; firm when moist; common roots; clear wavy boundary.

B'ZI 14 to 21 inches. Reddish brown (5YR4/4) clay; vertical cleavage gives the appearance of weak coarse 19812 prismatic structure which breaks to strong fine and medium angular blocky structure; plastic when wet; firm when moist; few roots; gradual smooth boundary.

B122 21 to 30 inches. Reddish brown (5YR4/4) clay; strong fine angular blocky structure with vertical 19813 cleavage; plastic when wet; very firm when moist; few roots; gradual smooth boundary.

30 to 38 inches. Reddish brown (5YR5/3) clay; weak fine to medium angular blocky structure with ver-В¹З 19814 tical cleavage; dark colored organic films or vertical faces of some peds; very firm when moist; plastic when wet; very few roots; gradual smooth boundary.

38 to 48 inches. Reddish brown (5YR5/3) clay; massive with vertical cleavage grading to weak fine 19815 angular blocky structure; dark colored organic films on vertical faces of some peds; very firm when moist; plastic when wet; few roots; diffuse smooth boundary.

C2 48 to 60 inches. Reddish brown (5YR5/3) to brown (7.5YR5/4) clay; massive with vertical cleavage 19816 grading to weak fine angular blocky structure; very firm when moist; plastic when wet; gradual irregular boundary.

60 to 65+ inches. Reddish brown (5YR5/3 to brown (7.5YR5/4) clay; massive to weak angular blocky 19817 structure; very firm when moist; plastic when wet; slight effervescence.

Remarks: Nearly dry when sampled.

Soil	temperatures:		Depth <u>inches)</u>	<u>Temperature</u>
		ſ	20 30 40 65	11° C. 11° C. 11° C. 10° C.

2.4

2.4D

2.40 2.3D

2.0D 1.9D

11.1

15.40 14.90

Ì3.9D

13.30

2.0

2.0

1.7

1.4

0-9

059-87

087-127 0.08

127-168 0.07

168-225 0.04

225-265 0.03

265-310 0.03

310-360 0.02

0.3

0.3

0.3

0.3

10.2

14.3

18.3

16.4

6.2

0.2

0.2

0.2

0.1

16.4

1.0

0.54

0.50

0.49

0.45

0.45

0.46

13.6 11.5

11.1

10.0

8.9

8.0

53

3.0

74 105

Pedon classification: Aquallic Hapludalf; fine-loamy, mixed, mesic.

Series classification: Some .

Soil: Kesson series .

Scall No.: S70 MN-20-2.

Scall No.: S70 MN-20-2.

Location: Dodge County, Minnesota; about 4 miles north of Hayfield; about 950 feet east and 450 feet south of the northwest corner of the SWL/4 of NWL/4; Sec. 35, T. 106 N., R. 17 W. About 92 deg.

50 min. west longitude and 43 deg. 57 min. north latitude.

Climate: Humid continental. Some features of precipitation in inches: annual normal - 29, May through September - 19, annual normal snowfall - 10. Some features of temperature in deg. F.; annual normal - 15, summer access

Parent material: Loamy mantle (loess?) over loamy calcareous Kansan(?) till with a thin intervening

Physicgraphy: Central lowlands: Iowan Erosion Surface (Rube); Rochester Till Flain (Wright);

rnyslography: Central lowlands: Iowan Erosion Surface (Ruhe); Rochester Till Flain (Wright);
Kenyon-Tacpd Plain, silty, undulating (MN Soil Atlas).
Landscape setting: Site has a slightly convex 3 percent slope on a summit. Topography in immediate vicinity is gently rolling. Relative relief in the immediate vicinity is about 20 feet. Elevation is about 1,320 feet. Major soils in the area are of the Kasson, Skyberg, and Racine series.
Vegetation: Corn field. Native vegetation was tall grass prairie or savanna.
Drainage: Moderately well drained.
Erosion: Slight.
Modest to wat: area recently had analyzed to the same state of the Kasson.

Moisture: Modst to wet; area recently had prolonged heavy rains. Water entered the pit at the contact of the two sediments and between prism faces.

Root distribution: Common to 23 inches, few below.

Permeability: Moderate in upper part of solum grading to slow or moderately slow in the IIC horizon.

Described by: J. F. Cummins on October 20, 1970.

Sampled by: R. B. Grossman, E. R. Gross, and J. F. Cummins on October 20, 1970.

- Ap 70L1068 0 to 22 cm (0 to 8 inches) Very dark gray (10TR 3/1) (10TR 1/1 to 5/1, dry) silt losm; weak fine granular and weak fine subangular blocky structure; friable; many fine pores; abrupt smooth boundary.
- HI 7011069 22 to 32 cm (8 to 13 inches) Dark brown (10TR 4/3) silt loam, dark grayish brown (10TR 4/2) (10TR 5/3, dry) ped faces; weak thin platy structure parting to weak fine subangular blocky structure; friable; many fine pores; abrupt smooth boundary.
- 7011070 32 to 43 cm (13 to 17 inches). Brown (10YR 4/3) silt loam, dark grayish brown (10YR 4/2) ped faces; few fine faint yellowish brown (10YR 5/6) mottles; moderate fine subangular blocky structure; friable; many fine pores; abrupt smooth boundary.
- IB22t 70IL071 43 to 59 cm (17 to 23 inches) Brown (10TR 4/3) loam, dark grayish brown (10TR 4/2) ped faces; few fine faint yellowish brown (10TR 5/6), grayish brown (2.5Y 5/2), and strong brown (7.5TR 5/8) mottles; moderate fine and medium primmitic structure parting to moderate fine and medium subengular blocky structure; friable; few thin patchy clay films in pores; many thick coatings of clean sand particles on ped faces; about 4 percent coarse fragments with more larger fragments, coarse gravel and cobbles, in upper part; clear wavy boundary.
- IIB23t 7011072 59 to 87 cm (23 to 34 inches) Yellowish brown (10TR 5/8) losm, light brownish gray (10TR 6/2) ped faces, few fine distinct light brownish gray (10TR 6/2) mottles; moderate to strong medium and coarse prismatic structure parting to moderate fine and medium subangular blocky structure; friable to firm; few thin patchy clay films in pores; many thick coatings of clean sand particles on ped faces; about 5 percent coarse fragments; clear wavy boundary.
- (B24t 7011073 87 to 127 cm (23 to 50 inches) Yellowish brown (10TR 5/6) losm, light brownish gray (10TR 6/2) ped faces; few fine distinct strong brown (7.5TR 5/8) and many fine distinct light brownish gray (10TR 6/2) mottles; strong coarse prismatic structure parting to moderate fine and medium subangular blocky structure; firm; thin patchy clay films in porce; many thick coatings of clean sand particles on ped faces; about 5 percent coarse fragments; few Fe-Mh oxide masses; clear wavy boundary.
- ICL 7011074 127 to 168 cm (50 to 66 inches) Tellowish brown (10TR 5/6) loam, many fine and modium distinct graylah brown (10TR 5/2) mottles; massive with oblique partings; firm; few lime concretions; few soft lime coatings on parting faces; few thick clay fillings in root channels; few thick coatings of clean sand particles on partings; about 5 percent coarse fragments; calcareous; clear ways boundary.
- CC2 70Ll075 168 to 225 cm (66 to 89 inches) Yellowish brown (10YR 5/4 and 5/6) loss; common coarse prominent strong brown (7.5YR 5/6) mottles; massive with oblique partings; firm; 5 percent coarse fragments; soft lime coatings and clean sand particles on partings; calcareous; clear wavy boundary.
- C3 70L1076 225 to 265 cm (89 to 106 inches) Yellowish brown (10YR 5/4 and 5/6) loam; common coarse prominent strong brown (7.5YR 5/6) mottles; auger sample but sand coated partings evident; about 5 percent coarse fragments; calcareous; clear wavy boundary.
- (ch. 7011077 265 to 310 cm. (106 to 124 inches) Yellowish brown (10YR 5/h and 5/6) losm or sandy clay losm; auger sample but few sand coated partings evident; about 5 percent coarse fragments; calcareous; clear wavy boundary.
- 7011078 310 to 360 cm (124 to 144 inches) Yellowish brown (10YR 5/6 and 5/8) losm or sandy olay losm; about 5 percent coarse fragments; auger sample.
- Remarks: A pedon each of the Racine series (S70 MN-20-1) and the Kasson series S70 MN-20-2) sampled in the immediate vicinity. Samples were collected from a pit that was dug with a backhoe.

COURTY - - - ITASCA

U. S. DEPARTMENT OF AGRICULTURY SOIL CONSERVATION SERVICE, HTSC MATIGMAL GOIL SURVEY LABORATORY LINCOLN, WEBRASKA

SOIL NO - - + - - 572MM-31-1

SOIL BO		·		-31-1  15 23		COUSTY		ITASC			76-721.57				10-	_			
GESER AL	100150		-	_				38 8F	LE NOS.						IRCH 197	7 			
DEPTH	#C#11	OB.	<del></del>	·		 FINE	· ·	CORS	LE SIZI SAND -	APAL:	YS1S,	LT 288	, 311, -SILT-	3414,	3A1E ) FAML	INTR	FINE	1	RATIO 8D1
CH	+		2- .05 (			LT .0002		1-		LT 21	.05 78	· 02		-002		- 02	TO CLAY PCT	CLAT PCT	BAR TO CLAY
0-020 20-030 30-040 40-044 44-325 325-360 360-385 385-410 410-420 420-440 440-450	LC01 LC02 012 LCA 2CG	!																	
DEPTE	PARTIC VOL. ( GT 2 PCT	LE 51     67   75   PCT	75-20 (~	LYSIS, - 921 20-5	687 - 5-2	1T .074	20-2 PCT LT20	FIELD STATE .16 G/CC	A DEFS ANTH OVER DRI G/CC	AD1 COLE	4B1C 1/10 BAR PCT	WAT #P1C 1/3- BAR PCT	FR CO: 4 B2A 15- BAR PCT	TENT- 4C1 WRD CM/ CM		CABBO 6B1B LT 2 PCT	PATE 3111 LT .002 PCT	(PE 8CTA 1/1 H20	T)
0-020			*					, d p-					104		1100				
20-030 30-040 40-044													102 95		824 766				
44-325 325-360 360-385 385-410 410-420 420-440 440-450													69		605				
DEPTH (	DEGAMIC 6111				PHOS	(EX	TRACT		SES SE		ACTY	az.		EXCH)	BATIO	RATIO BD3	CA 571		SAT) 5C1
	ORG P CARE		•, -	ex î P e	TOTL	CA	ĦĠ	WA	ĸ	EXTB	FACL	KCL EXT	ext e	BHYC	NHAC TO	ŦO	BHAC	EXTS ACTY	MHYC
	PCT			PCT	PCT						108		127			1.5	PCT 9	PCT 15	PCT 18
0-020 20-030 30-040						9.4 12.1	6.4 3.8	.3	2.3	19.1 16.9	123		140	107		3.2	11	12	16
40-044 44-325 325-360 360-385 385-410-420 410-420 440-450	58.5					8.1 13-2	2.0			10.8 15.0				93.7 89.7		4.1 9.4	9 15	7 10	12
DEPTE	(SATURI BEI 8			WA 5D2	BA 5B	SALT 8DS	GYP GF1A	( 8a1a	 6 N 1 B	601B	SATUR 6P1B	ATION 6018	BXTRAC: 611A	T 8A 1- 6J1A	6K1A	 611A	) 6H1A	ATTER	
CH	REST OBS-	PE		BSP	SAR	TOTL SOLD PPB		BC BBBOS/		He	AY	ĸ	CO3	EC03	Cr	304 	KO3	LQID LMIT PCT	
0-020	8000	3. 3	1433			1300		. 14	.1	, 1	TR	.6	0	. 0	0	0			
20-030 30-040 40-044		3, 3				920 650		.15	.3	.2 TR	TR O	.2 TR	0	0	c	0			
44-325 325-360 360-385 385-410 410-420 420-480 440-450	11600	4.1	829			640		.12	.1	ŤB	TR	TR	0		0	0	,		
DEPTE	(+ -				. <b></b> .	-sistos	OL CR	ARACTE! LK DEF)	PIZATIO	)# ·			•	:	)				
Ca .	CONT	ON PE	BC B VOL) BUB PCT	SOT 01 BABOI	HOSPE HOSPE	8C 1E 01E Caci	# # # # # # # # # # # # # # # # # # #	A 4A11 D 1/31 T RE41 C G/C	HD1 RE- Vet	BBS- IDU) PC:	4B' - Pili B STA' T PC'	4 481 5 1/3 7 REW 1 PC	C 48: B 15: T 88:	2 4C - 178 8 CH, 17 CH	1				
0-020 20-030	11	94	66	7.511 · 7.511	5/0	2.9	ı				110 82	0	90	<b>5</b> -					
30-040 40-044	. 7		44	7.5YI	6/1	4 3.1 4 3.1					76	6	90	6					
44-325 3 <b>25-</b> 360		88	49	7.5YI	5/1	u 4 3.9	1				60	1	6:	2					
360-385 385-4 10 4 10-4 20 4 20-4 40 4 40-4 50	97	41 16 76 <1	6 54		5/1 6/1 7.5/1	4.4 4.2 4.7													

43 Pedon classification: Typic Borossprist; dysic (see remarks). Series classification: Same. Soil: Loxley series . Soil No.: S72(73) MN-31-1. Location: Itasca County, Minnesota; Marcell Experimental Forest; bog in watershed S-2; NW 1, NW 1, NW 1, Sec. 13, T. 58 N., R. 25 W. About 17.5 deg. north latitude and about 93.5 deg. west longitude.

Climate: Humid continental. Mean annual temperature is 39 deg. F.; mean summer temperature is 65 deg. F. and mean winter temperature is 10 deg. F. Mean annual precipitation is 25 inches; mean May through September precipitation is 17 inches; total annual snowfall is about 55 inches. Frost-free period is about 100 days. Parent material: Organic soil materials derived from sphagnum moss and herbaceous plants over limnic materials over glacial lacustrine sediments. Physiography: Superior Uplands (Central Lowlands?) Marcell Moraine Complex of St. Louis sublobe of the Late Wisconsin glaciation. Area is rolling and maximum local relief is about 30 feet. Bog is inset about 20 feet, and it is in a closed depression. Elevation is about 1,450 feet. Vegetation: Black spruce forest with about 60 percent crown cover; sparse understory consisting mostly of labrador tea and leather leaf; ground cover mostly of spahgnum mosses. Basel area is 90 sq. ft./acre. Site index of black spruce is 27. Size of bog: About 10 acres. Bog is oval shaped. Distance to adjacent mineral land: About 200 feet. Microrelief: Few hummocks as much as I foot in height. Depth to water table: Water table is at soil surface. Water table is a local perched water table rather than the regional water table. Subsidence: None. Observers: Pedon described and sampled by R. S. Farnham, H. R. Finney, W. E. McKinzie, and W. C. Lynn. Tree growth measurements by E. R. Amborn, W. F. Johnston, and E. Verry. Both operations were performed on July 24, 1972. Samples were obtained with Macaulay peat sampler and spade. 721576 0 to 20 cm Dark brown (10TR 4/3, broken face and rubbed) fibric material, very pale brown (10TR 7/3, pressed); about 80 percent fiber, about 60 percent rubbed; massive; mostly sphagnum moss fiber with about 5 percent woody fiber and fragments; about 10 percent mineral material; gradual boundary. 72L577 20-30 cm Very dark grayish brown (10 YR 3/2, broken face and rubbed) herde material; about 50 percent fiber, about 30 percent rubbed; massive; mixed sphagnum moss and herbaceous fiber with about cm Dark brown (7.51R 3/2, broken face and rubbed) sapric material; about 30 percent 721629

```
SOIL CLASSIFICATION-TYPIC BOROSAPRIST
                                                                                   U. S. DEPARTMENT OF AGRICULTURE
                                                                                   SOIL CONSERVATION SERVICE, HTSC
BATIONAL SOIL SURVEY LABORATORY
                  RHIC
SERIES - - - - - - LUPICW
                                                                                   LINCOLN, WEBRASKA
SOIL NO - - - - - 57288-31-2
                                COURTY - - - ITASCA
GENERAL BETHCDS- - -14,1818,241,2F
                                              SAMPLE BOS. 72L580-72L587
                                                                                   MARCH 1977
                 DEPTH HORIZON
 CH
000-018
018-055
         OF
055-132
         012
132-300
         EAO
300-385
385-420
         014
         LCA
420-475
         LCO
475-490
       2CG
      (- -PB - -)
8C1A 8C1E
DEPTS
                                                                                            6B1B 3A1A
                                                                                                  002
                                                                                                       120
                                                                                                             CACL
             PCT (- - - PCT LT 75 - - - ) LT20
                                               8/CC
                                                    G/CC
                                                                     PCT
                                                                           PCT
                                                                PCT
                                                                           79
000-0 18
018-055
055-132
132-300
300-385
385-420
420-475
475-490
DEPTH (ORGANIC MATTER ) IRON PHOS (- -EXTRACTABLE MASES 584A - ) ACTY AL
                                                                           (CAT EXCH) RATIO RATIO
5434 5464 8D1 8D3
                                                                                                       (BASE SAT)
5C3 5C1
                                   6#2B 6Q2D 6P2B 6Q2B
CA HG BA K SUB
       6A1A 6B1A
OBGB BITG
                        6C2B
                                                                                      RBAC
                                                                                                             BEAC
                                                               BACL
                        EIT
                                                           162 44.0
209 39.6
                                                                                 140
                                                                                                  104
112
                                                                                                              116
122
                                                     1.7
                                                                            206
                                                                            249
                                                                                            12.0
018-055
055-132
        62.0
132-300
300-365
385-420
420-475
475-490
      (SATURATED PASTE) PA
                                             (-----) ATTERBERG
DEPTH
                                              8212 6818 6018 6918 6018 6112 6312 6812 6112 6912
BC CA HG NA K CO3 HCO3 CL SO4 NO3
                                                                                                       AF1 AF2
LQID PLST
       BEST PE
                                  8p5
                              51
                                  TOTL
                 520
                       BSP
                                   SOLU
                                             ##BOS/
                                                                                                       LHIT INDX
                                                               --- BEQ / LITER ---- ) PCT
                                                  ( - - -
 CH
        CN
                       PCT
                                  PPE
                                              CH
```

5700 6.6 1100 6.0

540

000-018

018-055 055-132 710

5300

1.6 17.3 3.5

18.8

<u>Parlim and the state of the American Property of the Company of t</u>

Scil: Impton Series.
Scil No.: 872(73)MN-31-2.
Location: Itasca County, Minnesota; Marcell Experimental Forest; bog in watershed S-3; SE %, NE %, NW %, Sec. 12, T. 58 N., R. 25 W. About 17.5 deg. north latitude and about 93.5 deg. west longitude.

Climate: Humid continental. Mean annual temperature is 39 deg. F.; mean summer temperature is 65 deg. F. and mean winter temperature is 10 deg. F. Mean annual precipitation is 25 inches; mean May through September precipitation is 17 inches; total annual snowfall is about 55 inches. Frost-free period is about 100 days.

Parent material: Organic soil materials derived orimarily from woody olanta over limbic materials over

sandy glacial sediments.

1 <u>- Landin</u>

Physiography: Superior Uplands (Central Lowlands?); Marcell Moraine Complex of the St. Louis sublobe of the Late Wisconsin glaciation. Area is rolling and maximum local relief is about 30 feet. Bog is inset about 20 feet and is in a broad, low-gradient drainageway that flows into a nearby lake. Elevation is about 1,450 feet.

Vegetation: Elack spruce forest with about 40 percent crown cover; a few white cedar, paper birch, and balsam fir; a moderate understory consisting mostly of alder, dogwood, and labrador tea; a few clumps of sphagnum moss. Basal area is 80 so. ft. Lecre. Site index of black soruce is hi.

Size of bog: About 30 acres in immediate area but this peatland extends through a narrow gap into another elongated area about 100 acres in size.

Distance to adjacent mineral land: About 200 feet.
Microrelief: Slight but a few hummocks as much as I foot in height.
Depth to water table: Water table is at soil surface. Water table is regional.

Subsidence: None. Observers: Fedon described and sampled by R. S. Farnham, H. R. Finney, W. E. McKinsie, and W. C. Lynn. Tree growth measurements by R. R. Amhorn. W. F. Johnston. and E. Varner. Roth connections were norformed on

- al 721580 O to 18 cm Black (N2/, broken face and rubbed) sapric material; about 15 percent fiber, trace after rubbing; massive; woody fiber; about 20 percent mineral material; common live roots; gradual boundary.
- s 721581 18 to 55 cm Very dark brown (10TR 2/2, broken face and rubbed) humic material; about 50 percent fiber, about 20 percent rubbed; weak fine granular structure; woody fiber; about 10 percent mineral material; pH 5.5; gradual boundary.
- a2 72L582 55 to 132 cm Black (10TR 2/1, broken face and rubbed) matrix and dark brown (7.5TR 3/2 & 11/4) fiber, sapric material; about 10 percent fiber, about 15 percent rubbed; weak fine granular structure; woody fiber; about 10 percent woody fragments; about 15 percent mineral material; pH 5.5; gradual boundary.
- 3 721583 132 to 300 cm Elack (10TR 2/1, broken face and rubbed) matrix and strong brown (7.5TR 5/6) fiber, sapric material; about 25 percent fiber, about 10 percent rubbed; massive; woody fiber; few thin layers with 15 to 25 percent of highly weathered woody fragments; about 30 percent mineral material; gradual boundary.
- 4 721584 300 to 385 cm Very dark brown (10TR 2/2, broken face and rubbed) sapric material; about 45 percent fiber, about 10 percent rubbed; massive; mostly herbaceous fiber with a trace of woody fiber; about 20 percent mineral material; abrupt boundary.
- ca 721585 385 to 420 cm Olive gray (5T 5/2, broken face and rubbed) marl; trace of plent detritus; massive; about 60 percent mineral material; gradual boundary.
- 420 to 475 cm Dark greenish gray (50Y 4/1, broken face and rubbed) coprogenous earth; trace of plant detritus; massive; slightly sticky; about 90 percent mineral material; abrupt boundary.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SGIL NO - - - - - 572MN-36-1

COUNTY - - - KOOCHICHING

ZGIĆ MO			- ST2M	N-36-1		COUNTY		KOOC	HICHIN	•									
GENER AL	ENERAL METHODS 14,1818,241,28							SAMPLE NOS. 721588-721593						M	ARCH 19				
DEPTH CM	HORT		SAND 2- .05	SILT -05-	CLAY LT .002	FINE CLAY LT	vcos 2- 2 1	CORS	LE SIZE SAND - MEDS -5- -25	FNES .25- .10	VFNS .10- .05	COSI .05	-SILT- FNS1 .02 .002	3A1A. VF\$I .005	FAMI TEX SANI	L INTR 7 II D .2 1 .02	FINE CLAY TO CLAY PCT	NON- CO3- CLAY	8D1 15- BAR TO CLAY
000-008 008-016 016-105 105-107 107-124 124-140	QA 1 QE QA 2 2A1 B 2C1G					,													
DEPTH (	PARTI VOL. GT 2 PCT	(= - · GT 75	75-20	WE1	IGHT 5-2	38, 38) LT .074	20-2 PCT	1/3- BAR	4A1H OVEN DRY	401 COLE	481C	WAT 481C 1/3- BAR PCT	ER CO 482A 15 BAR PCT	NTENT- 4C1 WRD CM/ CM		6È1B LT Z PCT	ONATE 3A1A LT -002 PCT	6C1A 1/1 H2O	8C1 1/2 CAC
000-008 008-016 016-105 105-107 107-124 124-140			ţ										80 85 82						
CM		681A NITG	C/N	IRON 6C2B EXT FE PCT	TOTL	(EX 6NZE CA	TR ACT/ 602D MG	ABLE BA 6P2B NA	ASES 5E 692B K	SUM EXT8	ACTY 6H1A BACL TEA ) G	AL 6G1E KCL EXT	(CAT SA3A EXTB ACTY	EXCH) 5A6A NHAC	PATIO 8D1 NHAC TO ) CLAY	. 8D3 CA TO MG	CA 5F1 SAT NHAC PCT	(BASI SC3 EXTB ACTY PCT	F SAT 5C1 NHA PCT
000-008 008-016 016-105 105-107 107-124 124-140	55.5						14.7 22.9 37.4	.3 .2 .3		64.9 87.7 155.0	121 103			120 135		3.2 2.8 3.1	39 48	35 46 1 57	6
DEPTH (	SATUR BE1 REST OHM- CM		8A H20	502 ESP PCT	SE Sar	SOLU PPM	6F1A PCT	BALA EC IMHOS/ CM	6N1B CA	601B MG	6P1B NA	601B K MEO	EXTRACT 611A CO3	6J1A HC03	6K1A CL	6L1A 504	6M1A NO3	ATTER	4FZ PLST
000-008 008-016 016-105 105-107 107-124 124-140	5700	4.0 4.7 4.8				13000 680 700		2.41 .18 .20	5.8 1.2 1.2	4.8 .9 1.0	TR TR	2.1 TR TR	0 0	.9 •4 0	0			•	•
CM	8F Minl	(STA)	TE OF C 8G ≣R VOL) 9 RUB		ISITIO IH PHOSPH	-HISTOS N) PH 8C1E T .O1H CACL	(8UL 4A34 FILD STAT G/CO	K DEN 4411 1/30 REWI G/CO	RIZATIO COLE	SUBS RES- IDUE PCT	484 FILO STAT	WATER 4810 1/31 PEW	CONTEN C 482 B 15- F 845	T 4C: HRI CM,	) 1 1 0	,,,-			
000-008 008-016 016-105	29 17 17		10	7.5YR 7.5YR 7.5YR 7.5YR	3/	2 4.6 2 5.1	-17	,		78	560 438	   	72 72 64					- ,	

٠,

Pedon classification: Terric Borosaprist; loamy, mixed, euic

Series classification: Typic Borosaprists; euic .

Soil: Lupton series (taxadjunct).

Scil No.: S72MN-36-1.

Location: Koochiching County, Minnesota; Big Falls Experimental Forest; NE 4, NE 4, Sec. 36, T. 157 N., R. 25 W. About 48.5 deg. north latitude and about 94.2 west longitude.

Climate: Humid continental. Mean annual temperature is 37 deg. F.; mean summer temperature is 64 deg. F.; mean winter temperature is 8 deg. F. Mean annual precipitation is 24 inches; mean May through September precipitation is 16 inches; total annual snowfall is about 55 inches. Frost-free period is about 100 days. Parent materials: Organic soil material derived mostly from woody plants over clayey glacial lacustrine

Physiography: Cantral Lowlands; Agassiz Lacustrine Flain (Big Fork Valley). Area is nearly level and local relief is mostly less than 5 feet. Elevation is about 1,200 feet.

Vegetation: Black spruce forest with about 50 percent crown cover; rather lush understory consisting mostly of labrador tea, dogwood, alder, raspberry, lingonberry and balsam fir; ground cover is mostly hypnum moss. Basel area is about 110 sq. ft./acre. Site index of black spruce is about 43.

acres - the Lake Agassiz peatlands. Size of bog: Several thousands

Distance to adjacent mineral land: About 1,200 feet to a low rise of mineral land that is about 50 acres in size. The mineral land is completely surrounded by peatland.

Microrelief: Common hummocks as much as 1 foot in height.

Depth to water table: At soil surface. Subsidence: None.

Observers: Described and sampled by R. S. Farnham, W. E. McKinzie, H. R. Finney, and W. C. Lynn. Tree growth measurements by E. R. Amborn and W. F. Johnston. Both operations were performed on July 25, 1972. Most samples were obtained with the Macaulay peat sampler. Samples of upper layers were obtained from small pit that was opened with a spade.

0 to 8 cm Very dark brown (10TR 2/1, rubbed); about 25 percent fiber, about 5 percent rubbed; weak fine and medium crumb structure; very friable; mostly woody fiber, few woody fragments; about 20 percent mineral material: gradual boundary.

72L589 8 to 16 cm. Dark brown (7.5TR 3/2, broken face) hemic material, very dark brown (10TR 2/2, rubbed); about 60 percent fiber, about 20 percent rubbed; massive; mixed sphagnum and hypnum moss fiber; about 15 percent mineral material; abrupt boundary.

16 to 105 cm Black (10TR 2/1, broken face) and very dark brown (10TR 2/2, broken face) matrix with mostly dark brown (7.5TR 4/4, broken face) fiber, sapric material, black (10TR 2/1, rubbed); about 25 percent fiber, about 10 percent rubbed; weak fine and medium crumb structure; very friable; woody fiber, few woody fragments; about 25 percent mineral material; abrupt boundary.

IIA1b 721591 105 to 107 cm Very dark gray (10YR 3/1) silty clay losm; massive; sticky; abrupt boundary.

IIC1g 72L592 107 to 124 cm Gray (5Y 5/1) sandy clay loam; massive; slightly sticky; clear boundary.

IIIC2g 72L593 124 to 140 cm Greenish gray (5GY 5/1) clay; massive; sticky.

Remarks: The depth to the mineral substratum ranges from 70 to 110 cm within a short distance from this pedon. A living mat mostly of Schagnum Magellaniccum and about 8 cm in thickness is at this site. Samples for measurement of bulk density were obtained at depths of 25-30, 30-35, and 48-53 cm. Samples for measurement of content of fiber were collected at depths of 2-8, 12-16, 30-34, 60-64, and 80-84 cm. Two other pedons were sampled in this area on this day. The others had black spruce with lower site-index than this site. This pedon is a taxadjunct to the Lupton series because the fiber in the sapric material is mostly woody.

SOIL CL			FINE	LIC HA MONT	PLAQUO HOR ILL	ONITIC	, MESI	C						S	OIL CO	ISERVA L SOIL	ENT OF Tion Si Surve Aska	RVICE	, MTS
SOIL NO	- :	:	- \$69M	N-7-7		COUNTY		BLUE	EARTH	I				•					
<u>Gemeral</u>	METHO	DS	-1A ₇	1B1B,	2 <u>41.</u> 2	В		SAMP	LE NOS					. <u>.                                   </u>	ULY 1970	5			
nëntu.	UOD 7	70u	(					040446			4-691.93			3414	3410 -		====		IRATI
DEPTH	HORI	ZUN	(																
				SILT				CORS	MEDS	FNES						II	CLAY		15-
			2-		.002	_000	2 1	1	.5- .25	.10	-05	-02	.002	.002	21	•2- •02	CLAY	CLAY	TO
CM			(						PC	T LT 2	W		- <b></b>			T. T .	) PCT	PCT	CLAY
000-33 033-51	AP Alz		6.5 5.7	43.5 45.9			0.2					11.9		12.5	3.8 2.5	16.3 17.7	39 32		0.5
0 <u>51-66</u> 066-117	A13		5.9	44.1	50.0	28.2	0.1	0.4		2.0		11.3	32.8		3.1	17.2	56		0.40
147-183	CG		7.8	41.5	50.7	24.5	0.2	0.4	1.3	3,1	2.8	10.0	31.5		5.0	14.6	48		0.4
DEPTH (	I PART I	CLE S	ZE AN	LYS1s		38. 38	1. 382	) ( BU	LK DEN	SITY	)(		ER CO	NTENT-	:	CARB	ONATE	(P	H = -
	YOL-	(		WE	IGHT -			) 4AID	4A1H	401	4B1C	4B1C	482	4C1		6E1B	3ALA	8C1A	8C1
	GT 2	GT 75	75-20	20-5	<b>5</b> -2	.074	PCT	1/3- BAR	DRY	COLE	1/10 BAR	1/3- BAR	15- BAR	WRD CM/		LT 2	LT •002	1/1 H20	1/2 CAC
CM	PCT	PCT	(	- PCT	LT 75		) LT20	G/CC	e/cc		PCT	PCT	PCT	ĊĦ		PCT	PC T		
000-33	TR	0	0	0	TR	95		1.38		.053	43.1	41.2			3.5C	ľ		7.1	
<u>033-51</u> 051 <b>-66</b>	TR TR	0	0	9 0	. TR	97		1.30B	1.71	-125	41.6	37.9	24.2 22.6	.16		1		7.0	
066-117	TR	0	0	Ö	TR	96		1.308					23.0			1		6.8	
147-183	TR	0	. 0	0	TR	94							22.9			1		7.1	
DEPTH (C	DOCANI	C MAT	ree i	TRON	PHOS	(E	XTRACT	ARIF B	ASES 5	844	ACTY	AL	(CAT	EXCH)	RATIO	RATIO	CA	( BAS	E SAT
MCA 111 11	6ALA	6B1A	C/N	6C2B	651A	6N2E	6020	6P2B	6 <b>Q2</b> B		6H2A	6G1D	5A3A	SAGA	8D1	8D3	5F	5C3	5C1
	CARB	NITG		EXT FE	TOTL	CA	MG	NA	ĸ	SUM Extb	BACL Tea	KCL Ext	EXTB ACTY	NHAC	NHAC TO	CA TO	SAT NHAC	EXTB ACTY	NHA
ÇH	PÇT	PCT		PCT	PCT	(			ME	Q / 10	6-		:		CLAY	MG	PCT	PCT	PCT
000-33 033-51	6.620																		
	1.39	0.09	14																
066-117 147-183		0.10	12																
141103	0.70																		
DEPTH (	SATUR	ATED	ASTE	NA	NA	SALT	GYP	(			SATUR	ATION	EXTRAC	8 A 1 -			)	ATTER	BERG
	8E1		8A	SD2 ESP	5E SAR	8D5 TOTL	6F1A	8A1A EC	6N1B CA	601B MG	6Pla Nā	6Q1A K	611A CD3	6J1A HCO3	6K1A CL	6L1A	ALNA NO3	4F1 LQID	4FZ
	REST DHM-	ra	H20	COP	JAK	SOLU		MMHOS/		-				-				LHIT	INDX
CH	CM	~~~~	PCT	PCT		PPM	PCT	CM	( ·			- MEQ	/ LITE	<u> </u>			)	PCT	
000-33 033-51		•							,			•••							
051-66																			
066-117 147-183		7.0							•										
141-143	2000																		
ANALYSES ST PAUL PHOSPHOP PHOSPHOP	, MN. Rus by	MINE	RALOGY C-PERG	BY X- HLORI	RAY AN C DIGE	ALYSIS STION.	. TQT	AL	,,	INVES CATED UNIT,	TIGATI REMAI BELTS	ONS UN	IT, LII Nalyse:	NCOLN,	NE. L	INLESS	Y THE S OTHERV EY INVE	13E T	NDI -
DEPTH		VER	MINER/ ILL: PCT L	ITE K	AOL Q	UARTZ	P	AVAIL P S/A1		PUSHE	-PENET DINTO CE OF	BULK 0.6 C	DENSIT' M USIN	Y CLOD	, EQUIL	I BRAT Netro	CM DIA ED AT I METER. D COMPI	/10-B	AR, A S ARE
000-33							1396			STREN	STH.								· ···-
033-51 051-66							564	3	(D)	DRGAN	IC, CAR	RON IS	41 KG	/# 50 '	O A DE	PTH Q	F 1 H (	DA J.	
066-117							•••	3											
147-183							1028	16											

Pedon classification: Cumulic Haplaquoll; fine, montmorillonitic, mesic.

Series classification: Same.

Soil: Lura series.

Soil No.: S69MN-7-7.

Location: Hlue Earth County, Minnesota; NEL/4 of SWI/4, sec. 26, T. 105 N., R. 27 W. (Sterling Twp.); about 800 feet south and 360 feet west of northeast corner of SWI/4. sec. 26. About 94 deg. 2 min. west longitude and 43 deg. 52 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 46, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal annual snowfall - 40.

Parent material: Deep, fine textured lacustrine sediments deposited over calcareous loamy glacial

till (New Ulm) of the Des Moines Lobe, Late Wisconsin age.
Physiography: Central Lowlands; glacial Lake Minnesota Plain in the Elue Earth Till Plain of H. E. Wright (1972).

About a 1/2 percent concave slope in a depression. General topography is nearly Landscape setting: level to very gently undulating. Relative relief is about 5 feet. Elevation of site is about 1.035 feet. Major associated soils on the landscape near this site are of the Beauford, Waldorf, and Collinwood series.

Vegetation: Recently plowed; native vegetation was a wet-site community of the tall grass prairie. Drainage: Very poorly drained.

Erosion: None.

Permeability: Slow.

Described by: R. J. Edwards and H. R. Firmey on October 22, 1969.

Sampled by: L. Shields, R. H. Rust, R. J. Edwards, and H. R. Finney on October 22, 1969.

69B806 0 to 33 cm (0 to 13 inches). Elack (N 2/) silty clay; weak to moderate very fine subangular blocky structure; friable, plastic and sticky; common roots; abrupt smooth boundary.

12 69B807 33 to 51 cm (13 to 20 inches) Black (10YR 2/1) silty clay; moderate very fine angular blocky structure; friable to firm, plastic and sticky; clear smooth boundary.

3 69B808 51 to 66 cm (20 to 26 inches) Black (10YR 2/1) clay; about 30 percent coarse inclusions of very dark gray (5Y 3/1); few fine distinct olive (5Y 5/4) mottles; weak coarse prismatic structure parting to moderate very fine angular blocky structure; firm, plastic and sticky; clear smooth boundary.

69B809 66 to 117 cm (26 to 46 inches) Black (5Y 2/1) clay; moderate very fine angular blocky structure; firm, plastic and sticky; clear smooth boundary.

Al5 (next sampled) 117 to 1147 cm (46 to 58 inches) Very dark gray (5Y 3/1) silty clay; weak to moderate very fine angular blocky structure; firm, plastic and sticky; clear smooth boundary.

common fine distinct clive (57 5/4) mottles; massive; firm to friable, plastic and sticky.

Remarks: Colors are for moist soil. These samples were obtained from a pit with approximate dimensions of 1 x 3 x 2 m in depth. This pedon is representative of the middle segment of the series.

SOIL CLA Series -			FINE	-SILTY		D, MESI	<b>c</b>		-					SO	DIL ÇÖ ATIONA	NS ERVA	TION S SURVE	AGRICU ERVICE. Y LABOR	MTS
SOIL NO			- S69M	N-7-10	)	COUNTY		BLUE	EARTH					•					
<u>GENERAL</u>	METHOD	s	-1A-	1818,	2A1, 2	:B		SAMP	LE NOS		25-69 <b>8</b> 8 6-691940		)	<u> </u>	LY 1976				
DEPTH	HORIZ	ON	(				1	PARTIC	LE SIZ	E ANAL	VSIS,	T 2MM	. 3A1,	3ALA.	3A1B			)	RATI
			SAND	SILT	CLAY	FINE	vcos	CORS	SAND -	FNES	VFNS	COS I	-SILT- FNSI	VFSI	FAML TEXT	INTR	CLAY	NON-	801 15-
	-		2-			LT											TD	CLAY	BAR
CM			.05			- 0002			PC	.10 T LT 2	HH			002	21		CLAY ) PCT		CLAY
000-23	AP		5.7	44.2	28.1	17.2	0.1	0.1	0.1	0.5	4.9	23.4	42.8	12.3	0.4	28.7	61		0.6
023-33	A12		4.9	61.7	33.4	22-0	0.0	0.0	0.1	0.3	4.5	22.2	39.5		0.4	26.9	66		0.5
033-48 048-60	A3 816		5.5 7.3			21.3	0.1	0.2			6-4	23.3	39.8	8.1 7.9		28.3			0.4
060-84	BZG		8.4	57.7	33.9	21.7	0.3	0.5	0.2	0.4	7.C	23.0	34.7		1.4	30.3	64		0.4
084-104 104-127	831G 832G		9.7 2.0	64.0 71.9			0.3 0.1	0.6		0.7 0.5	7.8	26.1 17.9	37.9 54.0	9.3		19.1	47		0.5
127~160	CG		1.9	79.4			0.0	0.4	0.5		0.4		65.8		1.5	14-4			0.6
DEPTH (						20 201							50 CO				OMATE	<u> </u>	==-
							}	4A1D	4A1H		481C	481C	482	4C1		6E1B	3A1 A	8C1A	8C1
		GT 75	75-20	20-5	5-2	LT 074	20-2 PCT	1/3 BAR	OVEN DRY	COLE	1/10 BAR	1/3- BAR	15- Bar	WRD CM/		. LT	.002	1/1 H20	T/2
CM			<b>(</b>	- PCT	LT 75	- =,					PCT		PCT			PCT			
000-23	TR	0	0	0	ŢŖ	99		1.26		0.065	35.1	35.1		0.23	2.0C			6-1	
023~33	TR TR	0	Ŏ	0	TR TR	99 98		1.30B 1.30		0.049			17.1	0.16				6.0	
033-48 048-60	TR	Č	Ó	Ō	TR	98		1.308					14.8					6.4	
969-84 984-194	TR TR	0	0	0	TR TR	98 97		1.33 1.22	1.60	0.064	27-7	26 - 4 34 - 4	15.6 13.2	0.14		·		7.0	
104-127	6	Ó	0	Ö	0	99		1.308					15.2			ī		7.3	
127-160	TR	0	0	0	TR	98		1-25	1.33	0.021	40.4	37.8	12.8	0.31		9		7.7	
DEPTH (C	RGANIC	HATT	ER )	IRON	PHOS	(EX	TRACTA	ABLE B	ASES 5	B4A	ACTY	AL	(CAT	EXCHI	RATIO	RATIO		( BASE	SAT
	6A1A		C/N	6C2B EXT		6N2E ÇA			602B K	SUM		KCL KCL		SA6A NHAC			5F SAT	SC 3 EXTO	SC1 NHA
	ORGN CARB	NITG		FE						EXTR	TEA	EXT	ACTY		TO	TO	NHAC	ACTY	
CM	PCT	PCT		PCT	PCT	(			ME(	7 / 10	) G			* <u>}</u>	CLAY	MG	PCT	PCT	PÇT
000-23 023-33	3.720																	<del></del>	
		0.096																	
048-60 060-84		0.057	9																
084-104	0.25																		
104-127 127-160																			
DEPTH (				NA	NA													ATTERB 4F1	
	BEL 8		BA H2Q	5D2 ESP	SE Sar	8D5 TOTL	6F1A	EC	CA		NA	K	C03		ČL			LQID	PLST
CH	OHM-		PCT	PCT		SOLU PPM	PCT	4MHÖS/ CM	· ·			MEG .	/ LITE					LMIT ) PCT	INOX
	/H													· 					
	CH.																		
000-23 023-33																			
000-23 023-33 033-48	_ <del></del>	<del></del>																	
000-23 023-33 033-48 048-60 060-84	•		~~~~											-					
000-23 023-33 033-48 048-60 060-84 084-104	2000	7.2															 		
000-23 023-33 033-48 048-60 060-84 084-104	2000 2000	7.2 7.3												-	. <del></del>				
000-23 023-33 033-48 048-60 060-84 084-104 104-127 127-160	2000 2000 3000	7.2 7.3 7.6	,		andro algorithm (all the second s					*			· <u>-</u> · ·						
000-23 023-33 023-48 048-60 060-84 084-104 104-127 127-160	2000 2000 3000	7.2 7.3 7.6							(A)	BULK :	DENSITY FIGATIO	AND	MATER C	ONTEN	ANAL	YSES B	Y THE	SOIL SU	RVEY
000-23 0023-33 033-48 048-60 060-84 084-104 104-127 127-160 ANALYSES ST PAUL, PHUSPHOR	2000 2000 3000 8Y MI	7.2 7.3 7.6 MMESC MINER NITRI	ALOGY C-PER	BY X-	RAY AN	ALYSIS. Stion.	TOTA	AL	(A)	INVES	TIGATIO REMAIN	AND I SHS UN	MATER ( ET, LII MALYSE:	ONTEN	ANAL NE.	YSES B UNLESS	Y THE	SOIL SU	RVEY
000-23 023-33 033-48 048-60 060-84 060-84 104-127 127-160 ANALYSES ST PAUL, PHOSPHOR	2000 2000 3000 8Y MI MN. RUS BY	7.2 7.3 7.6 MMESC MINER NITRI BRAY	ALOGY C-PERI S NO	BY X- CHLORI L EXTR	RAY AN C DIGE ACTANT	ALYSIS. STION.	TOT	LABLE	(B)	CATED UNIT, ESTIM	TIGATIO REMAI! BELTS\ ATED.	AND INS UN	MATER ( IT, LII NALYSE: MD.	ONTENT COLN, BY TH	ME. HE SOI	YSES B UNLESS L SURV	Y THE OTHER EY INV	SOIL SU WISE IN ESTIGAT	RVEY DI- IONS
000-23 0023-33 033-48 048-60 060-84 084-104 104-127 127-160 ANALYSES ST PAUL, PHUSPHOR	2000 3000 3000 8Y MI MN.	7.2 7.3 7.6 NMESC MINER NITRI BRAY	ALOGY C-PERI S NO I	BY X- CHLORI L EXTR	RAY AN C DIGE ACTANT	ALYSIS. STION.	TOT	LABLE	(B)	INVESTATED UNIT, ESTIMATE PUSHE	TIGATIC REMAIN BELTS ATED. -PENETO DINTO	AND INS UNITED A TITLE .  RATION BULK	MATER ( IT, LII MALYSE: MD. RESIST DENSITY	ONTENI COLN, BY TH TANCE -	ANAL NE. NE SOI A RO	YSES B UNLESS L SURV D 0.6 LIBRAT	Y THE OTHER EY INV	SOIL SU WISE IN ESTIGAT IS SLO 1/10-8A	RVEY DI- IONS
000-23 023-33 033-48 048-60 060-84 060-84 104-127 127-160 ANALYSES ST PAUL, PHOSPHOR	2000 2000 3000 8Y MI WS BY US BY	7.2 7.3 7.6 NMESC MINER NITRI BRAY.	ALOGY C-PERI S NO I MINERA	BY X- CHLORI L EXTR ALOGY- ITE K	RAY AN IC DIGE RACTANT	ALYSIS. STION.	TOTAL P	AVAIL	(B)	INVESCATED UNIT, ESTIMATE PUSHED DISTA	TIGATIO REMAIN BELTSV ATED. -PENETI DINTO WCE OF	AND INS UNITED A CONTROL OF CONTR	MATER ( IT, LII NALYSE: MD. RESIST DENSITY N USING	ONTENT COLN, BY TH TANCE - CLOD, A POC	ANAL NE. NE SOI A RO EQUI	YSES B UNLESS L SURV D 0.6 LIBRAT ENETRO	Y THE OTHER EY INV CM DIA ED AT METER.	SOIL SU WISE IN ESTIGAT IS SLO 1/10-BA UNITS	RVEY DI- IONS MLY R, A
000-23 023-33 033-46 048-60 064-64 064-104 104-127 127-160 ANALYSES ST PAUL, PHOSPHOR PHOSPHOR	2000 2000 3000 8Y MI WS BY US BY	7.2 7.3 7.6 NMESC MINER NITRI BRAY.	ALOGY C-PERI S NO I MINERA	BY X- CHLORI L EXTR ALOGY- ITE K	RAY AN IC DIGE RACTANT	ALYSIS. STION. 	TOTAL P	AVAIL PS/A-1	(B) (C)	INVES CATED UNIT, ESTIM MICRO- PUSHE DISTAI FORCE STREN	TIGATIO REMAIN BELTSY ATED. -PENETH DINTO WCE OF (KG) /	AND INS UNITED AND INS AND INS AND INS AND INS AND INS	MATER ( IT, LI) NALYSES MD. RESIST DENSITY N USING T ESTI	ONTENT COLN, BY TH TANCE - CLOD, A POC MATES C	ANAL NE. NE SOI A RO , EQUI CKET P OF UNC	YSES B UNLESS L SURV D O.6 LIBRAT ENETRO ONFINE	Y THE OTHER EY INV CM DIA ED AT METER. D COMP	SOIL SU WISE IN ESTIGAT IS SLO 1/10-BA UNITS RESSIVE	RVEY DI- IONS MLY R, A
000-23 023-33 033-48 048-60 060-84 084-104 104-127 127-160 ANALYSES ST PAUL, PHOSPHOR PHOSPHOR DEPTH	2000 2000 3000 8Y MI WS BY US BY	7.2 7.3 7.6 NMESC MINER NITRI BRAY.	ALOGY C-PERI S NO I MINERA	BY X- CHLORI L EXTR ALOGY- ITE K	RAY AN IC DIGE RACTANT	ALYSIS. STION. 	TOTAL (LB:	AVAIL PS/A-1	(B) (C)	INVES CATED UNIT, ESTIM MICRO- PUSHE DISTAI FORCE STREN	TIGATIO REMAIN BELTSY ATED. -PENETH DINTO WCE OF (KG) /	AND INS UNITED AND INS AND INS AND INS AND INS AND INS	MATER ( IT, LII NALYSE: MD. RESIST DENSITY N USING	ONTENT COLN, BY TH TANCE - CLOD, A POC MATES C	ANAL NE. NE SOI A RO , EQUI CKET P OF UNC	YSES B UNLESS L SURV D O.6 LIBRAT ENETRO ONFINE	Y THE OTHER EY INV CM DIA ED AT METER. D COMP	SOIL SU WISE IN ESTIGAT IS SLO 1/10-BA UNITS RESSIVE	RVEY DI- IONS MLY R, A
000-23 023-33 033-48 048-60 060-84 060-84 104-127 127-160 ANALYSES ST PAUL, PHOSPHOR	2000 2000 3000 8Y MI WS BY US BY	7.2 7.3 7.6 NMESC MINER NITRI BRAY.	ALOGY C-PERI S NO I MINERA	BY X- CHLORI L EXTR ALOGY- ITE K	RAY AN IC DIGE RACTANT	ALYSIS. STION. 	TOTAL (LB:	AVAIL PS/A-1 17 22 7	(B) (C)	INVES CATED UNIT, ESTIM MICRO- PUSHE DISTAI FORCE STREN	TIGATIO REMAIN BELTSY ATED. -PENETH DINTO WCE OF (KG) /	AND INS UNITED AND INS AND INS AND INS AND INS AND INS	MATER ( IT, LI) NALYSES MD. RESIST DENSITY N USING T ESTI	ONTENT COLN, BY TH TANCE - CLOD, A POC MATES C	ANAL NE. NE SOI A RO , EQUI CKET P OF UNC	YSES B UNLESS L SURV D O.6 LIBRAT ENETRO ONFINE	Y THE OTHER EY INV CM DIA ED AT METER. D COMP	SOIL SU WISE IN ESTIGAT IS SLO 1/10-BA UNITS RESSIVE	RVEY DI- IONS MLY R. A
000-23 023-33 033-48 048-60 064-84 084-104 104-127 127-160 ANALYSES ST PAUL, PHOSPHOR PHOSPHOR DEPTH	2000 2000 3000 8Y MI WS BY US BY	7.2 7.3 7.6 NMESC MINER NITRI BRAY.	ALOGY C-PERI S NO I MINERA	BY X- CHLORI L EXTR ALOGY- ITE K	RAY AN IC DIGE RACTANT	ALYSIS. STION. 	TOTAL (LB:	AVAIL PS/A-1 17 22 7 4	(B) (C)	INVES CATED UNIT, ESTIM MICRO- PUSHE DISTAI FORCE STREN	TIGATIO REMAIN BELTSY ATED. -PENETH DINTO WCE OF (KG) /	AND INS UNITED AND INS AND INS AND INS AND INS AND INS	MATER ( IT, LI) NALYSES MD. RESIST DENSITY N USING T ESTI	ONTENT COLN, BY TH TANCE - CLOD, A POC MATES C	ANAL NE. NE SOI A RO , EQUI CKET P OF UNC	YSES B UNLESS L SURV D O.6 LIBRAT ENETRO ONFINE	Y THE OTHER EY INV CM DIA ED AT METER. D COMP	SOIL SU WISE IN ESTIGAT IS SLO 1/10-BA UNITS RESSIVE	RVEY DI- IONS MLY R. A
000-23 023-33 023-46 048-60 048-60 064-64 064-107 127-160 ANALYSES ST PAUL, PHOSPHOR PHOSPHOR DEPTH	2000 2000 3000 8Y MI WS BY US BY	7.2 7.3 7.6 NMESC MINER NITRI BRAY.	ALOGY C-PERI S NO I MINERA	BY X- CHLORI L EXTR ALOGY- ITE K	RAY AN IC DIGE RACTANT	ALYSIS. STION. 	TOTAL (LB:	AL LABLE  AVAIL P  5/A-1  17  22  7  4  5 12	(B) (C)	INVES CATED UNIT, ESTIM MICRO- PUSHE DISTAI FORCE STREN	TIGATIO REMAIN BELTSY ATED. -PENETH DINTO WCE OF (KG) /	AND INS UNITED AND INS AND INS AND INS AND INS AND INS	MATER ( IT, LI) NALYSES MD. RESIST DENSITY N USING T ESTI	ONTENT COLN, BY TH TANCE - CLOD, A POC MATES C	ANAL NE. NE SOI A RO , EQUI CKET P OF UNC	YSES B UNLESS L SURV D O.6 LIBRAT ENETRO ONFINE	Y THE OTHER EY INV CM DIA ED AT METER. D COMP	SOIL SU WISE IN ESTIGAT IS SLO 1/10-BA UNITS RESSIVE	RVEY DI- IONS HLY R, A

Pedon classification: Typic Haplaquell; fine silty, mixed, mesic.

Series classification: Same.

Soil: Madelia series

Soil No.: 69MN-7-10.

Location: Blue Earth County, Minnesota; SWL/4 of NWL/4, Sec. 30, T. 107 N., R. 27 W. (Rapidan Twp.); about 700 feet north and 500 feet east of southwest corner of NWI/4 of Sec. 30. About 94 deg. 8 min. west longitude and 44 deg. 3 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 46, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal annual snowfall - 40.

Parent material: Deep, silty lacustrine sediments of the Des Moines Lobe, Late Wisconsin age. Physiography: Central Lowlands; glacial Lake Minnesota Plain in the Elue Earth Till Plain of H. E. Wright (1972).

Landscape setting: Less than 1/2 percent, slightly concave slope. General topography is nearly level to undulating. Relative relief in the immediate vicinity is about 10 feet, but the nearby Watonwan River is incised about 150 feet into the plain. Elevation at the site is about 1,000 feet. Major associated soils on the landscape are moderately well-drained Kingston on nearly level to slightly elevated slopes and well-drained Truman soils on stronger slopes.

Vegetation: Recently plowed oat field; native vegetation was tall grass prairie.

Drainage: Poorly drained. Erosion: Slight.

Permeability: Moderate.

Described by: R. J. Edwards and H. R. Firmey on October 23, 1969.

Sampled by: L. Shields, R. J. Edwards, E. R. Gross, J. J. Murray, J. F. Cummins, and H. R. Finney on October 23, 1969.

- 69B825 0 to 23 cm (0 to 9 inches) Black (N 2/ to 10YR 2/1) silty clay loam; weak very fine subangular blocky structure; friable, plastic and sticky; common roots; abrupt smooth boundary.
- 69B826 23 to 33 cm (9 to 14 inches) Black (10TR 2/1) silty clay loam; moderate fine subangular blocky structure; friable, plastic and sticky; common roots; clear smooth boundary.
- 69B827 33 to 48 cm (14 to 19 inches) Black (10TR 2/1) silty clay loam; moderate very fine sub-angular blocky structure; friable, plastic and sticky; few roots; about 2 percent clive gray (5Y 4/2) fillings; clear smooth boundary.
- Ig 69B828 48 to 60 cm (19 to 23 inches) Dark clive gray (5Y 3/2) and clive gray (5Y 1/2) silty clay loam, very dark gray (10YR 3/1) ped coatings; common fine distinct clive (5Y 1/3) mottles; weak medium prismatic structure parting to moderate very fine subangular blocky structure; friable, plastic and sticky; clear smooth boundary.
- 69B829 60 to 84 cm (23 to 33 inches) Dark gray (5Y 4/1) light silty clay loam; grades to gray (5Y 5/1) and olive gray (5Y 5/2) in lower part; common fine distinct clive brown (2.5Y 14/4) and few fine prominent yellowish red (5YR 4/6) mottles; weak medium prismatic structure parting to moderate very fine subangular blocky structure; friable, plastic and sticky; clear smooth boundary.
- B31g 69B830 84 to 104 cm (33 to 41 inches) Gray (5Y 5/1) heavy silt loam; common fine prominent yellowish brown (10TR 5/6) and strong brown (7.5YR 5/6) mottles; weak coarse prismatic structure parting to weak very fine subangular blocky structure; friable, plastic and sticky; few soft black concretions; clear smooth boundary.
- B32g 69B831 104 to 127 cm (41 to 50 inches) 2g 69B831 104 to 127 cm (41 to 50 inches) Gray (5Y 5/1) and light clive gray (5Y 6/2) silt loam; common fine prominent yellowish brown (10YR 5/6) and strong brown (7.5YR 5/6) mottles; weak coarse prismatic structure parting to weak very fine subangular blocky structure; very friable, slightly plastic and slightly sticky; few dark gray krotovina; clear smooth boundary.
- 69B832 127 to 160 cm (50 to 60 inches) Light olive gray (5Y 6/2) silt loam; many fine and medium prominent strong brown (7.5YR 5/6) mottles; weak very fine and fine subangular blocky struc-

SOIL CLASSIFICATION-TERRIC BORGSAPRIST U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, HTSC NATIONAL SOIL SURVEY LABORATORY LINCOLF, WEBRASKA COUNTY - - - KITTSON SOTT. NO - - - - - \$7268-35-2 SAMPLE NOS. 7216 10-7216 14 GENERAL METHODS- - - 18,181E,281,28 MARCH 1977 DEPTS ROPT205 1- .5- .25- .10- .05 .02 .005- SAMD .2-.5 .25 .10 .05 .02 .002 .002 2-.1 .92 2- .05- LT LT 2-.05 .002 .002 .0002 1 PCT CLAY CB 0-8 OAT 8-31 ٥E 31-108 012 CAS 54.3 21.0 24.7 3.0 5.5 6.8 32.4 6.6 5.6 15.4 47.7 125-130 2312 DEPTE (PARTICLE SIZE ARALYSIS, 88, 38, 381, 382) ( BULK DENSITY ) (- - - VOL. (- - - - WEIGHT - - - - -) 4A1D 4A1H 4D1 4B1C GT GT 75-20 20-5 5-2 LT 20-2 1/3- OVEN COLE 1/10 2 75 8AR DRY BAR ---) CARBONATE (--PH --6218 3212 8C12 8C -WATER CONTENT-8C13 8C12 4B1C 1/3-4C1 4 B 2A 15-LT LT 75 .074 PCT PCT (- -- PCT LT 75 --- ) LT20 G/CC PCT G/CC PCT PCT PCT CH PCT 0-8 86 8-31 31-108 108-125 86 .23 .53 .316 351 336 90 .59 82 125-130 DEPTH (ORGANIC SATTER ) INON PROS (- -FITRACTABLE BASES 584A- -) ACTY (CAT EXCH) RATIO RATIO 5A3A 5A6A 8D1 8D3 (BASE SAT) 6A1A 6E1A OBGB BITG 612E 602D 6P2E 6Q2B 8D3 CA 5F1 503 501 C/N 6C28 6 H 1 A 6G1# SA3A SUN BHAC BITB BACL SAT PXT KCL EXTE PHAC TOTL CA EG WA ĸ BYTB TEA CARB FE PCT (- - - - - - - - - - NEQ / 100 G- -84 PCT PCT PCT 105 44.0 111 37.3 106 37.8 132 35.5 125 129 148 84 86 78 78 47.8 1.0 151 194 2.4 121 0-8 1.0 .4 150 145 193 8-31 56.0 31-108 51.2 43.1 3.0 116 2.8 72 169 153 110 125-130 110

5

Pedon classification: Terric Borosaprist; sandy or sandy-skeletal. mixed. euic.

Series classification: Same.

Soil: Markey series.

Soil No.: S72MN-35-2.

Location: Kittson County, Minnesota; SW 1/3, SW 1/3, Sec. 10, T. 159 N., R. 45 W. About 48.8 deg. north latitude and about 97.5 deg. west longitude.

Climate: Rumid continental. Mean annual temperature is 38 deg. F.; mean summer temperature is 66 deg. F., and mean winter temperature is 6 deg. F. Mean annual precipitation is 20 inches; mean May through September precipitation is 14 inches; total annual snowfall is about 35 inches. Frost-free period is about 110 days.

Parent material: Organic soil material derived primarily from herbaceous plants over sandy lacustrine sediments of Glacial Lake Agassiz.

Physiography: Central lowlands; Lake Agassiz Plain; area is nearly level and local relief is mostly less than 5 feet. Elevation is about 1,060 feet.

Vegetation: Mostly sedges and grasses with scattered willow and bog birch.

Size of bog: Several hundred acres.

Distance to adjacent mineral land: Over 1,000 feet. Microrelief: Very slight.

Subsidence: Slight. Depth to water table: About 88 cm.

Described and sampled by: D. D. Barron, J. O. Nordin, R. S. Farnham, W. E. McKinzie, W. C. Lynn, and H. R. Finney on July 27, 1972. Samples were obtained from a pit that was dug with a spade.

1 721610 0 to 8 cm Black (10TR 2/1, broken face) sapric material, black (N 2/, rubbed); about 15 percent fiber, about 5 percent rubbed; weak fine crumb structure; very friable; berbaceous fiber; common live roots; about 20 percent mineral material; clear smooth boundary.

721611 8 to 31 cm. Very dark brown (10YR 2/2, broken face and rubbed) matrix with dark brown (7.5 YR 3/2, broken face) fiber, hemic material; about 60 percent fiber, about 25 percent rubbed; massive; nonsticky; herbaceous fiber; about 15 percent mineral material; pH 5.5 in water; gradual smooth boundary.

31 to 108 cm Black (10YR 2/1, broken face and rubbed) sapric material; about 30 percent 721.612 fiber, about 5 percent rubbed; weak medium to very thick platy structure; nonsticky; herbaceous fiber; about 20 percent mineral material; pH 5.5 in water; gradual smooth boundary.

3 721613 108 to 125 cm Black (N 2/, broken face and rubbed) sapric material; about 15 percent fiber, about 5 percent rubbed; weak coarse angular blocky structure; slightly sticky; herbaceous fiber; about 10 percent mineral material in parts to as much as 60 percent in other parts; abrupt smooth boundary.

721614 125 to 130 cm Black (N 2/) sandy loam; massive; slightly sticky; clear smooth boundary. IIA1b

130 to 140 cm Very dark gray (5Y 3/1) loamy coarse sand; massive. (not sampled)

Remarks: Bulk samples were collected at depths of 0-8, 8-31, 31-108, 108-125, and 125-130 cm. Samples for determination of bulk density were collected at depths of 0-8, 8-31, 15-50, 55-60, 60-70, and 85-90 cm. Samples primarily for determination of content of fiber were collected at depths of 0-8, 15-18, 65-70, 85-90, and 125-130 cm.

															ļ				
4	Ĭ																		_
,,- <u></u>																			
															- ( ) C-	<u> 10=</u>		_	
																			_
e ber al	EETHO	bs	-12.1	B1E,2A	1.28			SAMP	LE NOS	721.0	15-72L	619 -		м	ARCH 19	77			
				· ·	-														
DEPT 8	BORI	ZCB	.05	.002	CLAY LT	PINE CLAY LT _0002	7COS 2-	CORS 1-	SAND - NEDS .5-	FWES .25-	▼F#S .10-	COSI .05	, 311, -SILT- FNSI .02 .002	)	PANI TEXT - Sabu 21	INT!	CLAY CLAY	CCT A CO3- NOM-	81 15 BA TO
0-16 16-40 10-62 52-90	0a 1 0B 0A 2 2A 1B 2C	*																	
PTB	VOL. GT 2	( · GT 75	75-2	ALYSIS, - WE1 0 20-5	GRT - 5-2	LT .074	20-2 PCT	411D 1/3- BAR	4118 OVEN DRY G/CC	4D1 COLE	( 4B1C 1/10 BAB PCT	-WAT 4B1C 1/3- BAR PCT	PCT	Tent- 4C1 Wed CH/ CH		) CARE	OFATE BATA LT .002	(P1 8C1A 1/1 H20	80
0-16 6-40 0-62 2-90 0-105	*****							.18 .17 .20	.39 .33	.308 .247 .236	436 484 428.	405 388 414	86.0 80.0 69.0 8.0	.57 .52 .64			****		
PPB (C		6E11		IRON 6C2B EXT PE PCT	TOTL	6B2B Ca	602D 86	6P2B Wa	6Q2B K	SUB EXTB	6H1A BACL TEA	6G1E KCL EXT	5131	SA6A PHAC	8 D 1	CA TC		(BASI 5C3 EXTB ACTY PCT	50
0-16 6-40 0-62 2-90	53.7 51.2 1.57					133.0 106.0 120.0 10.4 1.1		.9 .6 .5 .1	.4	177.0 140.0 152.0 13.7	39.5 52.0		216.0 192.0 202.0 15.5	149.0 136.0 152.0		3.1 3.2 3.8 3.6	89 78 79	62 73 75 88 100	1 1
CS	(SATUR) 821 ( REST ORE- CM	PE	81 B20 FCT	5D2 ESP PCT	52 Sab	8D5 ( TOTL SOLU PPE 1	SP1A E PCT	SA1A PC BBOS/ CH (	6#1B Ca	601B NG	621B ( #1	K K MBQ ,	/ LITER	631 M HC03	6K11 CL	611A 504	681A NO3	4F1 LQID LHIT PCT	4P2 PLS INC
0-16 6-40 0-62 2-90 0-105	950 1200 1100 6500 11000	5. 6 5. 5 5. 4 6. 2 6. 7	689.0 792.0 666.0 29.2 24.1	1 8		8700 7100 6000 130 70				10.5 6.8 5.8 2.6 1.7	.5 .3 .2 .2	.3	0 0 0 0	.2 .2 .9 0	0 0 0 0	14.9 9.3 12.6 3.1 2.1	8.5 6.4 4.4 2.9		
PTR	(- + 87 BIBI CONT PCT	(STAT	E OF S 8G B VOL B BUB PCT	SOLUB SOLUB	SITION H HOSPHT ILITY	HISTOSO PB 8C1E .01M CACL	OL CHA (BUL 4A3A FILD STAT G/CC	BACTIF K DEW) 4 A 11 1/38 BBWT G/CO	COLE COLE AD1 BE- WET	N SUBS RES- IDUB PCT	() 484 FILD STAT PCT	ATER 4816 1/31 REW	CONTEN C 482 B 15- F BAR T PCT	) T) 4CT WRD CE/ CE					
0-16 6-40 0-62 2-90 0-105	14 17 53	4 2 6 2 10	18 2	10YR 10YR 10YR	6/3 6/3 2/2	6.2 5.8 5.6	.21 .20 .22	* <b>* * *</b> * *		51 771 56	359 373 341 19		88.0 81.0 88.0 2.7	• •					

Pedon classification: Terric Borosaprist; sandy or sandy-skeletal, mixed, euic.

Series classification: Same .

Soil: Markey series.

Scil No.: S72MN-35-3.
Location: Kittson County, Minnesota; SW 1, NW 2, Sec. 20, T. 161 N., R. 45 W. About 48.8 deg. north latitude and about 97.5 deg. west longitude.

Climate: Rumid continental. Mean annual temperature is 38 deg. F.; mean summer temperature is 66 deg. F., and mean winter temperature is 6 deg. F. Mean annual precipitation is 20 inches; mean May through Sentember precipitation is 11 inches: total annual snowfall is about 35 inches. Frost-free period is

about 110 days.

்ப்பட்ட ப

Parent material: Organic soil material derived primarily from herbaceous plants over sandy lacustrine sediments of Glacial Lake Agassiz.

Physiography: Central lowlands; Lake Agassiz Plain; area is nearly level and local relief is mostly less than 5 feet. Elevation is about 1.015 feet.

Vegetation: Mostly sedges and grasses. The area has been burned many times.

Size of bog: Several hundred acres.

Distance to adjacent mineral land: About 300 feet. Microrelief: Very slight. Depth to water table: About 62 cm. Subsidence: Slight.

Described and sampled by: D. D. Barron, J. O. Nordin, R. S. Farnham, W. E. McKinzie, W. C. Lynn, and H. R. Finney on July 27, 1972. Samples were obtained from a pit that was dug with a spade.

Oal 72L615 0 to 16 cm Black (10TR 2/1, broken face and rubbed) sapric material; about 30 percent fiber, about 5 percent rubbed; weak fine crumb structure; very friable; herbaceous fiber; about 15 percent mineral material; pH 5.0; clear smooth boundary.

Oe 721616 16 to 40 cm Black (10YR 2/1, broken face and rubbed) matrix with dark brown (7.5YR 3/2, broken face) fiber, hemic material; about 60 percent fiber, about 20 percent rubbed; weak thin platy structure; nonsticky; herbaceous fiber; about 10 percent mineral material; pH 5.3; gradual smooth boundary.

022 , 771 677 10 to the file on Theat 12 mm 2.12 bustone days and without a make of a street of account

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MYSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA . SOIL CLASSIFICATION-TYPIC HAPLAQUOLL SOIL NO - - - - - S694N-7-1 COUNTY - - - BLUE EARTH GENERAL METHODS- - -1A, 1818, 2A1, 2B SAMPLE NOS. 698766-698772 (A) JULY 1976 691941-691947 DÉPTH HORIZON PATIO INTR FINE MON-801 15-C03-CLAY FNES VENS COST FNST SAND SILT CLAY vcos CORS MEDS VFSI TEXT 11 CLAY BAR -25-CLAY .002 CLAY -05 .002 -002 -0002 -5 -25 .05 .002 CM - PCT LT 2MM - -CLAY PCT 12.6 5.7 3.9 20.8 000-23 45.8 41.6 26.6 0.7 11.7 34.1 6.9 0-47 10.3 48.9 26.6 28.5 27.8 A12 0.5 033-46 A3 816 12.3 44.1 43.6 0.3 0.7 1.0 4.9 5.3 4.9 10.5 33.6 7.0 0.44 056-71 21.8 071-105 34.0 25.6 2.7 3.1 9.5 2C16 23.9 42.1 11.8 1.6 A . . 9.0 33.1 12.6 28-2 105-140 25.5 30.8 38 0.54 (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)( BULK DENSITY 14- ---WATER CONTENT- - - -) CARBONATE (- -PH - -) 4A1H 401 OVEN COLE 481C 1/10 8C1A 8C1E VOL. (-4ALD 481C 482 4C1 6E1B 3A1 A 75-20 20-5 5-2 LT 20-2 1/3-6T GT 1/3-15-LT 1.T -074 BAR CH/ 00 2 PC 1 BAR DRY CACL HZŌ CH PCT PCT (- - - PCT LT 75 - - ) LT20 G/CC G/CC PCT PCT PCT PCT 1.25 000-23 91 1.33 -021 36.5 19.4 -21 5.8 36-1 023-33 90 91 .088 33.9 TR 32.0 TR TR 1.72 TR 20-0 1.26 33.8 -17 .106 -040 -054 046-56 92 1.22 35.6 34.5 20.3 .17 1.65 6.7 7.7 34.1 34.7 33.0 92 1.43 32.6 20.3 78 071-105 1.49 •23 •24 1.98 1.88 1.27 105-140 AL 6G1D KCL EXT DEPTH (ORGANIC MATTER ) [RON . PHOS (- -EXTRACTABLE BASES 584A- -) ACTY (CAT EXCH) RATIO (BASE 5C3 6N2E 6D2D 6P2B 6ALA ORGN 6814 C/N 651A TOTL 6HZA BACL 5434 5444 801 803 SUM NHAC NHAC NITE CA MG SAT EXTO ACTY TO ACT PCT PCT PCT (- - --MEQ / 100 CLAY PCT PCT CH PCT G--PCT 0.5 0.4 0.5 000-23 12 14 12 0.6 11.2 0.1 41.7 10.3 41.7 100 3.33C 0.273 29.9 29.9 52.0 1.00 1.04 3.59 9.7 51.1 0-263 0.6 0.1 40.3 38.9 36.0 0.92 0.85 0.78 0.68 0.5 12.7 42.1 046-56 056-71 0.5 0.97 11 0.6 41.4 0.39 0.4 0.2 071-105 0-13 105-140 0.26 0_8 0.4 0.4 0.71 DEPTH (SATURATED PASTE) NA SD2 ---- SATURATION EXTRACT 841-----ATTERBERG SALT GYP 8D5 6FIA BAIA 6NIB 601B 6PIA 6QIA 6IIA 6JIA 6KIA 6LIA 6MIA EC CA MG NA K CO3 HCO3 CL SO4 NO3 4F1 4F2 LOID PLST 8E1 8C18 CA REST H20 ESP SAR TOTL HC CL MMHQS/ LMIT INDX OHM-SOLU ( - - - - - - - MEQ / LITER - - - - - - - - -PCI 000-23 ż٥ 023-33 046-56 056-71 33 61D 500 24 1000 071-105 105-140 2000 BULK DENSITY AND WATER CONTENT ANALYSES BY THE SOIL SURVEY INVESTIGATIONS UNIT, LINCOLN, NE. UNLESS OTHERWISE INDI-CATED REMAINING ANALYSES BY THE SOIL SURVEY INVESTIGATIONS ANALYSES BY MINNESOTA AGRICULTURAL EXPERIMENT STATION, ST PAUL, NN. MINERALOGY BY X-RAY ANALYSIS. TOTAL PHOSPHORUS BY NITRIC-PERCHLORIC DIGESTION. AVAILABLE PHOSPHORUS BY BRAY'S NO 1 EXTRACTANT. UNIT, BELTSVILLE, MD. (B) MICRO-PENETRATION RESISTANCE - A ROD O.6 CH DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10-BAR, A DISTANCE OF O.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE DEPTH -MINERALOGY-TOTAL AVAIL HONT ERM ILLITE KAOL VERM KAOL QUARTZ (--LBS/A---) 000-23 25 10 936 23 STRENGTH. (C) ORGANIC CARBON IS 20 KG/M SQ TO A DEPTH OF 1 M (6A).
(D) LL AND PI BY SOIL MECHANICS LAB. USDA-SCS. LINCOLN. NE 023-33 16 762 046-56 20 0 10 5 0 770 15 10

105-140

Series classification: Same.

Soil: Marna series.

Soil No.: S69MN-7-1.

Location: Elue Earth County, Minneseta; Swl/4 of Swl/4, Sec. 23, T. 105 N., R. 28 W. (Shelby Twp.); about 1100 feet north and 300 feet east from east side of center of road function. About 91 deg. 10 min. west longitude and 43 deg. 53 min. north latitude.

Climate: Hundd continental. Some characteristics of temperature in deg. F. are: annual normal - 46, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal annual snowfall - 40.

Parent material: Moderately shallow, fine textured lacustrine sediments over calcareous loam glacial

till, (New Ulm) of the Des Moines Lobe, Late Wisconsin age.
Physiography: Central Lowlands; glacial Lake Minnesota Plain in the Blue Earth Till Plain of H. E.

Wright (1972).

Landscape setting: Pedon has a level plane slope. General topography is nearly level to gently undulating. Relative relief is about 10 feet in the immediate area. Elevation is about 1,045 feet. Motor assertisted andle on the landscape pare this site one of the firm Custon

1 , <u>Yêr ji</u>

Drainage: Poorly drained.

Erosion: Slight.

Permeability: Moderately slow in upper part, moderate in the glacial till.

Described by: R. J. Edwards and H. R. Finney on October 20, 1969.

Sampled by: L. Shields, R. J. Edwards, J. J. Murray, J. F. Cummins, and H. R. Finney on October 20, 1969.

69B766 0 to 23 cm (0 to 9 inches) Black (10YR 2/1) heavy silty clay loam; weak to moderate very fine subangular blocky structure; firm, slightly plastic to plastic; common roots; abrupt smooth boundary.

69B767 23 to 33 cm (9 to 13 inches) Black (10YR 2/1) heavy silty clay loam; moderate very fine subangular blocky structure; firm, plastic and sticky; common roots; clear smooth boundary.

69B768 33 to 46 cm (13 to 18 inches) Black (10YR 2/1) silty clay; very dark gray (10YR 3/1) rubbed; moderate very fine and fine subangular and angular blocky structure; firm, plastic and sticky; few roots; clear smooth boundary.

69B769 46 to 56 cm (18 to 22 inches), Very dark gray (10YR 3/1) silty clay; black (10YR 2/1)

SOIL CLASSIFICATION-TYPIC HAPLAQUOLL FINE-LOAMY, MIXED, MESIC SERIES - - - - - - MAXCREEK

SOIL NO - - - - - S70MN-24-1

COUNTY - - - FREEBORN

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

GENERAL METHODS- - -1A,1818,2A1,28 SAMPLE NOS. 7011089-7011099

											vete .	T 244	261	2414	2 4 7 0				1DATI
DEPTH	HORIZ	CON				FINE	(		SAND -		)	{	-SILT-		FAML	INTR	f i ne	NON-	8D1
			SAND	\$1LT -05-	CLAY	CLAY	VCOS	CORS	MEDS	FNES	VFNS	COSI	FNSI	VFS I	TEXT	11 :2=	CLAY	CD3-	15-
			.05	002	-002	.000Z	. i	.5	.25	.10	-10- -05	.02	.002	.002	21	.02	CLAY		to
CM			(						PCI	LT 2	MM						PCI	PCT	
000-21 021-33 033-54 054-76 076-105	ALP		15.2	56.7	28.1	17.5	.7	3.0	3.5	5.0	3.0	23.7	33.0	7.1	12.2	29.1 27.9	62 .	28 31	.5 .5
)21-33 )33-54	A12 A3G		8.9	59.3	31.8	20.2	.5	1.7	1.8	2.6	2.3	24.4	34.9	7.1	6.6	28.0	64	32	. 4
54-76	8210	Ġ	31.3	44.6	24.1	13.7	2.5	5.0	6.1	10.5	7.2	21.3	23.3	5.2	24.1	33.6	57	24	
76-105	28220	3	55.1	24.8	20-1	18.7	4.3	10.1	11.9	19.5	9.3	10.8	14.0	4.0	45.8	29.9 30.3 32.7	93 42	20 19	.4
132-160	2010		56.3	28.8	14.9	6.6	5.3	10.0	11.9	19.3	9.8	13.0	15.8		46.5	32.7	44	15	. 4
160-210	2C3		55.5	29.1	15.4	6.7	4.2	9.4	11.9	19.8	10.2			4.0	45.3	33.9	44	15 11 13	-4
210-260					10.8 12.7		5.8	13.1 10.3	15.3	20.7	10.3	12.6	13.7 14.7	2.6	54.9 47.0	30.4 35.8	61	11	.4
760~305 305-335				13.8		7.8	7.6			14.2	5-1	7.6	6.2	1.4			••	6	. 3
									<b>,</b>										
DEPTH	(PARTIC	LE S	ZE AN	LYSIS	, MM, :	38, 3Bl	, 382	) ( BU	LK DEN	SITY	(	-WATE	ER CON	TENT-	:	CARBO	NATE	(P)	H
	GT.	( ·	75-20	WE	5-2		20-2	1/3-	OVEN	COLE	1/10	1/3-	15-	WRD		LT	LT	1/1	1/2
	ž	75	,,,,,,			.074	PCT	BAR	DRY		4B1C 1/10 BAR PCT	BAR	BAR	CM/		2	.002	HZO	CAC
000-21 021-33 033-54 054-76 076-105 105-132 132-160 160-210	TR	0	0	0	TR	87	TR	1.24	1.49	-065	33.7	31.5	15.9	- 20	4.00	3		5.8	5.
21-33	TR	0	. 0	0	TR	89	TR	1.36	1.54	.049	28.9	26.7	14-9	-16	2.3	3		6.8	6. 6.
)54=76	'n	ŏ	TR	i	ï	72	'n	1.38	1.55	.040	26.7	24.1	11.0	.18	2.0	•		7.1	6.
76-105	3	0	TR	2	3	47	5	1.54	1.70	-032	19.2	17.5	8.8	-13	2.0	3 4	0	7.5	7. 7.
105-132	3	0	TR	2	3	46	7	1.704	1.00	.024	21.4	14.5	7.1	*10	2.11	11	ŏ	7.8	7.
160-210	5	ŏ	TR	4	Š	46	9	1.68	1.74	.011	20.2	16.7	7.0	-15		12	0	8.2	7.
			0	3		37	9						4.7 5.5			11 12	0	8.3	7. 7.
260-305 305-335		0	0	2	3	46 22	5 5						2.4				ŏ	8.1	7.
																- 			
DEPTH (	ORGANI	MAT	TER )	IRON	PHOS	fFY	TRACT	ABLE B	ASES 5	34A	ACTY	AL	(CAT	EXCH)	RATIO	RATIO	CA SF1		E SAT: 5C1
	6A1A ORGN		C/N	EXT	TOTA	6NZE	MG	NA NA	OUZ D	SUM	BACL	KCF	EXTE	NHAC	NHAC	CA	SAT	EXTR	NHA
	CARB			CC				••••		EXTB	6HIA BACL TEA	EXT	ACTY	· -	TO	TO	NHAC	ACTY	
CM	PCT	PCT		PCT	PCT	( <u>-</u>			ME(	2 / 10	0 G				CLAY	MG	PCT	PCT	PCT
000-21	3.880	.332	12	0.7		26.2	7.9	0.5	0.7	35.3	9.6		44.9	35.1	1.25	3.3	75	79	10
021-33	1.84	.159	12	0.7		25.8	8.4	0.4	0.7	37.1	3-4		34.4	28.4	0.89	2.8	77	90	10
054-76	0.32	.029	8	0.8		16.3	6.0	0.2	0.5	23.0	2.5		25.5	21.0	0.87	2.7	78	90	iic
076-105	0.12			0.7		13.7	5.0	0.2	0.4	19.3	1.0		20.3	16.3	0.81	2.7	84	95	11
105-132	0.11			0.6		13.70	3.80	0.2	0.4	18.1				10.1	0.76				
160-210	0.11			0.5		13.90	2.6D	0.2	0.3	17.0				9.4	0.61				
210-260	0.08			0.4		12.30	2.00	0.2	0.2	14.7				6.9	0.64				
000-21 021-33 033-54 054-76 054-76 105-132 132-160 160-210 210-260 260-305 305-335	0.11			0.2		5.8D	1.00	0.2	0.2	7.1				4.0	0.62				
DEPTH	( SATUR	ATED F	ASTE)	NA	NA	SALT	GYP						– – . – –						BERG
	BEL (	BC1B	8A 1130	5D2	5E 5A0	8D5	6F 1 A	BAIA SC	PMIR	MC 9018	SATURA 6P1B NA	P. 0.18	611A CO3	HCO3	CL	SD4	NO3	Lain	PLST
	OHW-		n20	Car	341	SOLU		MHHOS/			.,					•		LMIT	INDX
CM	CM		PCT	PCT		PPM	PCT	CM	( ·			MEQ /	LITE	} <b>-</b>			- <i></i> )	PCT	
000-21													<b>-</b>					50E	21
021-33																			
033-54 054-76																		39E	23
076-105		7.0	35.8	1		140		0.62	3.6	1.8	0.5	0.1						32E	19
105-132																			
132-160 160-210																		23E	9
210-260																			

ANALYSES BY MINNESOTA AGRICULTURAL EXPERIMENT STATION, ST PAUL, MN. MINERALOGY, X-RAY ANALYSIS. TOTAL PHOS-PHORUS, NITRIC-PERCHLORIC DIGESTION. AVAILABLE PHOS-PHORUS, BRAY'S NO 1 EXTRACTANT.

DEPTH	(	N	INERAI	LOGY	QUARTZ	TOTAL P	AVAIL
CM		-PCT LT		MM		(LBS	/A 1
000-21	45	20	30	- <b></b> 5	0	1816	142
021-33	45	20	30	5	0		30
033-54	50	20	25	5	0	700	9
054-76	50	20	25	5	0	928	4
076-105	55	20	20	5	0		4
105-132	55	Ī5	25	5	0	1148	4
132-160	60	15	20	5	0		6
160-210	55	20	20	5	0		7
210-260	50	20	25	5	0	588	7

5

5

0

260-305

305-335

. 20

50

(A) ESTIMATED.

(B) MICRO-PENETRATION RESISTANCE - A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10-BAR, A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRES-SIVE STRENGTH.

ORGANIC CARBON IS 16 KG/M SO TO A DEPTH OF 1 M (6A).

METHOD GHAC FOR CA AND 60AC FOR MG.

DETERMINED BY SOIL MECHANICS LAB - SCS, LINCOLN, NE.

Pedon classification: Typic Haplaquell; fine-leamy, mixed, mesic. Series classification: Typic Haplaquells; fine-silty, mixed, mesic.

Soil: Maxcreek taxadiunct*

Soil No.: S70,MN-24-1.

Location: Freeborn County, Minnesota; about 4 miles south southeast of Oakland; about 300 feet north and 165 feet east of the southwest corner of the NW 1/4, Sec. 2h, T. 102 N., R. 19 W., Oakland Township.

Climate: Humid continental. Some features of temperature in deg. F.: annual normal - 46, summer normal - 70, winter normal - 18; some features of precipitation in inches: annual normal - 30. May through September - 19, annual normal smowfall - 40.

Parent material: Thin loess mantle over loany calcareous till of the Des Moines Lobe of the Late Wisconsin glaciation.

Physiography: Central Lowlands; Bemis Moraine in Owatonna Moraine Area of H. E. Wright (1970); Northfield-Myrtle Moraine, irregular, rolling (MN Soil Atlas).

Landscape setting: Site has a plain level slope. Topography in the immediate area is nearly level and gently undulating, and relative relief is about 10 feet. Elevation is about 1,220 feet. Major soils in the immediate area are of the Moland, Merton, and Maxcreek series.

Vegetation: Wheat stubble field. Native vegetation was tall grass prairie.

Drainage: Poorly drained.

Erosion: None

Moisture: Moist near wet.

Permeability: Moderate.
Described by: J. F. Cummins on October 22, 1970.

Sampled by: R. B. Grossman, E. R. Gross, R. H. Rust, and J. F. Cummins on October 22, 1970.

p 7011089 0 to 21 cm (0 to 8 inches) Black (10YR 2/1) to (N 2/) silty clay losm; weak fine granular structure; friable; trace of coarse fragments; neutral; abrupt smooth boundary.

70I1090 21 to 33 cm (8 to 13 inches) Black (10YR 2/1) silty clsy loam; moderate fine and medium subangular blocky structure; friable; few krotovinas; trace of coarse fragments; a thin plow pan at upper boundary; neutral; clear irregular boundary.

g 7011091 33 to 54 cm (13 to 21 inches) Very dark gray (10YR 3/1) silty clay loam; black (10YR 2/1) and dark gray (10YR 4/1) krotovinas; weak fine and medium subangular blocky structure; friable; few pores; neutral; clear wavy boundary.

Plg 7011092 54 to 76 cm (21 to 30 inches) Dark gray (2.57 4/1) silty clay loam; weak fine and medium prismatic structure parting to moderate fine and medium subangular blocky structure; friable; few Fe-Mn oxide masses; few pores; neutral; clear wavy boundary.

IB22g 70L1093 76 to 105 cm (30 to 41 inches) Olive gray (57 5/2) loam; common medium distinct dark yellowish brown (107R 4/4) mottles; weak fine and medium prismatic structure parting to moderate fine and medium subangular blocky structure; friable; about 2 percent coarse fragments; few pores; neutral; clear wavy boundary.

Cig 70L1094 105 to 132 cm (41 to 52 inches) Olive gray (5Y 5/2) loam; common medium distinct dark yellowish brown (10TR 4/4) and few fine prominent dark brown (7.5TR 3/4) mottles; weak fine and medium prismatic structure parting to moderate fine and medium subangular blocky structure; friable; about 4 percent coarse fragments; few pores; calcareous in parts; clear wayy boundary.

IC2 70IL095 132 to 160 cm (52 to 63 inches) Olive gray (5Y 5/2) loam or sandy clay loam; many medium distinct dark yellowish brown (10YR 1/4) and few fine prominent dark brown (7.5YR 1/4) mottles; weak fine and medium prismatic structure parting to weak fine and medium subangular blocky structure; friable; about 5 percent coarse fragments; calcareous in parts; clear wavy boundary.

7011096 160 to 210 cm (63 to 83 inches) Grayish brown (2.57 5/2) and light clive brown (2.57 5/4) and 5/6) loam or sandy clay loam; massive with large oblique partings; frisble; about 5 percent Grayish brown (2.5Y 5/2) and light clive brown (2.5Y coarse fragments; calcareous; abrupt wavy boundary.

7011097 210 to 260 cm (83 to 100 inches) (Probe sample) Light olive brown (2.57 5/4) sandy clay loam or sandy loam; many coarse prominent yellowish brown (10YR 5/8) and strong brown (7.5YR 5/8) and few medium prominent yellowish red (5YR 5/8) mottles; massive; friable to very friable; about 6 percent coarse fragments; calcareous; abrupt boundary.

105 7011098 260 to 305 cm (100 to 117 inches) (Auger sample) Light clive brown (2.57 5/4) sandy clay loam or sandy loam; many coarse prominent strong brown (7.57R 5/8) mottles; massive; very firm; calcareous; abrupt boundary.

COARSE SAND; yellowish brown (10YR 5/8) sandy clay loam, coarse sand, loose; Bandy clay loam, very firm; weakly calcareous.

Remarks: Samples were collected from a pit that was dug with a backhoe.

Withis pedom is a taxadjunct to the Maxoreek series because it has more sand and less silt in the B21g, IIR, and IIC horizons.

OIL MET	laca sand	ly loss	1			80	IL Nos.	<u>863MN</u>	<u> </u>	LOC	ATION _	Benton	Count	y, Min	nesota			
DIL SURVEY	LABORATO	RY L	incoln,	Hebra	aska	_				LAB	8. Nos	18877-	18885		Augu	et 19	967	
meral l	inthods:	1A, 3	LBUb, 2	2Al, 2	В													
			Total		1			Size clas	s and part	icie diamete Si		_	3A1	1	· · · ·	Coa	rse fragme	nts O A
			ı	Ι.		i .	ſ	T			1	·					3382	<u> </u>
Depth	Horizon	Sand	Sift	Clay	Very coarse		Medium	Fine	Very fine		Int. III	Int. □				3B1 2-19	2-19	
(in.)		(2-0.05)	0.002)	( < 0.002)	(2-1)			(0.25-0.1)	(0.1-0.05)	0.05-0.02	0.002)	(0.2-0.02)	(2~0.1)			WC.	Vol.	
1-0	101	-			<del></del>	Pcf	t. of << 2	(NAT)		1	T .	1		1		Pat.	Pet.	
0-1	Äì	47.7	39.9	12.4	1.9	7.4	10.1	18.9	9.4	16.9	23.0	36.0	38.3			3		
1-4	A21	59.3	39.9 34.4	6.3	3.5	9.4	13.0	22.8	10.6	16.0	18.4	38.2	48.7			3	_	L
4-10	A22	62.3	32.6 26.0	5.1	3.9		12.8 14.4	25.3 24.4	11.4	15.4 12.7	17.2	39.5	50.9 58.0			15 20	14	
10-19 19-28	Bx2	69.3 71.3	21.0	4.7 7.7	7.3 8.4	11.9 12.9	14.9	24.5	11.3 10.6	10.2	13.3 10.8	36.2 33.0	60.7			35	27	
28-40	Bx3	64.3	26.9	8.8	5.7 6.4	11.4	13.4	22.3	11.5	12.2	14.7	35.0	52.8			21	16	
40-55	CJ.x	64.0	26.3	9.7	6.4	12.3	13.3	20.9	11.1		14.0					15 16	11	
55-72	Œx:	66.5	23.7	9.8	6.4	12.7	14.6	22.0	10.8	30.7	13.0	32.4	55.7			70	15	
							<del></del>	Į.		<u> </u>		<u> </u>		_	<u> </u>	<u> </u>	<u> </u>	
	6AJa	6 <b>B</b> )a			-	h 49 -	l hann	Bulk densit		4101	4B4	Vater conte	141842	402			pH I	801
Depth	Organic	Nitrogen	C/N		Carbonate		1/10=	4A1g  1/10-	4Alb   Air-	COLE	Field.			/10-to				
(ln.)	carbon				as CaCO ₃	State		Bar	Dry		State	Bar		15-Ba-				(1:1)
						١,	<u>b</u> g/∝				۱							
1-0	Pct.	Pct.			Pct.	g/cc	g/cc	g/cc	g/cc		Pct	Pct.	Pct.	n./in	1	-	+	
0-1	8.69	0.609	14						1				18.8					6.4
1-4	1.33	0.112	12		ļ	2 62.		ļ	ļ	ļ	9 z		4.7				1	5.8
4-10 10-19	0.34	0.031	117			1.464	1.49	1.73	1.73	۱ ـ	8.6 5.4	9.8	2.7	0.11				5.4
19-28	0.11					1.84	1.33	1.82	1.84	0.002 0.003 0.003	7.4	10.7	3.7	0.09			l .	5.5 5.8
26-40	0.09					1.85	1.55	1.84	1.86	0.003	4.1	10.5	4.7	0.10		1		5.9 5.9
40-55	0.05					1.86	1.65	1.85 1.91	1.87	0.003	7.9	10.9 9.3		0.10				5.9 5.9
<u>55-72</u>	0.05					++73	1.00	11.71	1.7-	0.000	1.,	7.3	7.0	0.00			<del>                                     </del>	7.3
	<u> </u>	Extractel	la herer	5 Eda	<u> </u>	6HIA	Cat. B	cch. Cag	1 600A		<u> </u> 	+	<u> </u>	<u> </u>	803	<del>                                     </del>	Base sat	uration
	6 <b>%</b> 2a	602a	6P2a	692a		Bact.	5A3a.	5Ala	KCL-						.		503	5¢
Depth (In.)	_	۱		_ ا	a	Acidita		MIR, CA	Brt.						Ce/Mg		Sum	NH4
4	Ca	Mg	Na	K	Sam		Cartalogue	1	YT.								Cattlenne	
		<u>'</u>	1	<u> </u>	meg/100 g	i ——		<u> </u>	$\rightarrow$	<u>.</u>							Pct.	Pct.
1-0				ĺ .			l	l., ,										
0-1 1-4	29.6 6.4	5.0 1.3	tr tr	0.4 0.2	35.0 7.9	12.2 6.7	47.2 14.6	33.4							5.9 4.9		74 54	105 78
4-10	2.3	1.3		D.1	3.7	4.7	8.4	5.0	0.3	1		1		t —	1.8		14	74
10-19	2.4	p.8	tr	0.1	3.3	3.4	6.7	4.6									49 62	72
19-28	4.0	1.7	tr	0.1	5.8	3.6	9.4	6.8		<u> </u>	1	<del>                                     </del>	<del>                                     </del>	<u> </u>	2.4	-	67	85
28-40 40-55	4.3 4.5			0.1 0.1	7.0	3.3	9.9	7.2							2.0		71	92 96
55-72	4.1		0.1	<u>5.1</u>	6.6	2.9	9.9	7.0							1.8		70	9h
	1																	
										L	L	<u></u>	<u> </u>		<u> </u>	<u></u>		
	Ratios 1	io Clas	8D1					Mathod										
		1						sted to 13B2).		ade vo	Trame Di	ut mot	werigh.	t of 2	- to 19	y- <b>188</b> 1	materi	a.l.
Depth	l			4		'	(tais ethor	1 3m2).	•									
Depth (fn.)	MEET CANC		15-Bar			1												
	HH _L OAc CEC		Water															
(in.)																		
(in.)	CEC		Water															
(in.)			Water 1.52 0.75															
1-0 0-1 1-4 4-10	2.69 1.60 0.98		1.52 0.75 0.53			-												
1-0 0-1 1-4 4-10 10-19	2.69 1.60 0.98 0.98		1.52 0.75 0.53 0.47															
1-0 0-1 1-4 4-10 10-19 19-28	2.69 1.60 0.98 0.98 0.88		1.52 0.75 0.53 0.47															
1-0 0-1 1-4 4-10 10-19 19-28 28-40 40-55	2.69 1.60 0.98 0.98		1.52 0.75 0.53 0.47 0.48 0.53 0.48		_													
1-0 0-1 1-4 4-10 10-19 19-28 28-40	2.69 1.60 0.98 0.98 0.88		1.52 0.75 0.53 0.47 0.48 0.53		_													

Soil classification: Typic Fragiochrept; coarse-loamy, mixed, frigid,

Soil: Milaca sandy loam. Soil Nos.: 363MN-5-3.

Area: Benton County, Minnesota.

Location: NW NW Sec. 33, T38N, R29W, 150 feet from highway into wood pasture - NW from driveway into pasture.

Vegetation: Mixed hardwoods

Parent material: Red till - sandy clay loam Physiography: Rolling area in ground moraine

Slope: 6 percent Aspect: North Erosion: None Drginage: Well

Permeability: Moderate Ground water: Deep Moisture: Dry

Stoniness: Many in profile

Described by: W. W. Anderson.

Sampled October 1, 1963, by W. W. Anderson, M. F. Grimes, R. Farnham, M. Ziebell, G. Holmgren and R. L. Juye.

0 to 1 inches, black (10YR 2/1) and very dark gray (10YR 3/1) fine sandy loam to loam; very

<u>Horizon</u>

1 to 0 inches, partly decomposed leaves with some grass,

LSL 18878 friable; smooth abrupt boundary. A21 1 to 4 inches, dark gray (10YR 4/1) and dark grayish brown (10YR 4/2) sandy loam; weak to moderate LSL 18879 medium and thin platy structure; very friable; pH 5.4; clear smooth boundary. 4 to 10 inches, dark grayish brown (10YR 4/2) to dark brown (10YR 4/3) grading to brown (10YR -A22 LSL 18880 7.5YR 4/3) with depth; sandy loam; weak to moderate medium and thin platy structure; very friable; pH 5.3; clear smooth boundary. 10 to 19 inches, dark brown (7.5YR 4/3) to reddish brown (5YR 4/3) sandy loam; weak medium platy Rx1 LSL 18881 with moderate medium platy structure in spots; hard, friable to firm, firm in place when moist; vesicular; slightly redder root staining between some of the plates; pH 5.6; gradual boundary. Bx2 19 to 28 inches, reddish brown (5YR 4/3-4/4) sandy loam; weak medium platy structure and massive LSL 18882 in spots; hard, friable to firm, very firm in place when moist; vesicular; a very few clay films on surface of plates; pH 5.8. Boundary was not described. 28 to 40 inches, dark reddish brown (5YR 3/3) light sandy clay loam with a few large faint dark Bx3 LSL 18883 reddish gray (5YR 4/2) mottles which have reddish brown (5YR 4/4) rings around them; moderate thin and medium platy structure; hard, friable to firm, very firm in place when moist; clay bridging between some sand grains; clay films in some pores and pebble sockets; pH 5.8. Boundary was not described. (This was thought to be a good fragipan.)

Clx 40 to 55 inches, reddish brown (5YR 4/3) and dark reddish brown (5YR 3/3) light sandy clay loam; LSL 18884 moderate thin and medium platy structure; hard, friable to firm, very firm in place when moist; pH 5.6. Boundary was not described.

C2x 55 to 72 inches, reddish brown (5YR 4/3) light sandy clay loam; moderate thin and medium platy LSL 18885 structure; hard, friable to firm, very firm in place when moist.

Hole to 88 inches. No appreciable change.

SOIL Milaca losm SOIL Nos. S63 MN-48-1 LOCATION Mille Iacs County, Minnesota.

SOIL SURVEY LABORATORY Incoln, Nebraska LAB. Nos. 18886-18896 August 1967

		<del></del>	EUb, 2					Size class	and parti	cle diamete	r (mm)	3A						
			Total			_	_	Şand		Sil		<u> </u>				Çoar	se fragmer	nts 2/
Depth (in.)	Harizon	Sand (2-0.05)	Silt	Clay ( < 0.002)	Very coarse	Coarse (1-0.5)	Medium	Fine (0.25–0.1)	Very fine	0.05_0.02	Int. III	Int. <b>II</b> (0.2–0.02)	(2-0.1)			3B1 2-19	3B2 2-19	
(111.)			0.002)	(= 0.002)	(2–1)		. of << 2 r	ı ,	(0.1-0.03)	0.00	0.002)		·			Wt. Pet.	Vol.	
0-2	Ap	36.4	55.5	8.1	2.4	6.0	7.7	11.7	8,6	30.6	24.9	44.7	27.8			2	1	
2-4	A21	37.1		6.5	2.0	5.7	7.7	111.8	9.9	33.3	23.1	48.8	27.2			3	2	
4-10	A22	43.5	50.3	6.2	2.9	5.7 6.2	8.9	14.8	10.7	29.6	20.7	47.5	32.8			ğ	5	
10-14	B1	60.8	33.6	5.6	7.0	9.8	11.9	20.6	11.5	18.9	14.7	40.6	49.3			25	17	
14-21	B21	71.2	22.4	5.6 6.4	8.1	12.8	14.5	24.3	11.5	11.0	11.4	34.7	59.7			26	_•	
21-32	B22	76.5	17.8	5.7	8.2	14.4	16.8	26.3	10.8	9.2	8.6	33.0	65.7			30	21	
32-41	Bel	76.5 66.3	25.0	8.7	5.2	11.6	14.8	23.5	11.2	11.5	13.5	34.5	55.1			19	3/4	
41-55	Bx2	63.8	28.2	8.0	5.6	10.2	13.5	23.0	11.5	13.0	15.2	36.3	52.3			14	11	
55-62	Clx	63.4	27.7	8.9	5.5	11.2	13.ó	22.1	11.6	12.9	14.8	35.8	51.8			15	11	
62-70	C2x	61.1	30.2	8.7	5.2		12.0	22.0	12,8	13.5	16.7	37.7	48.3			14	10	
70-80	C3x	65.0	26.4	8.6	7.6			20.8	11.2	12.8	13.6	34.8	53.8			15	n	
	6Ala	6 <b>B</b> la			6122a			Bulk density		4 m.		ater conte	_				ρН	_
Depth	Organic	Nitrogen	C/N		Carbonate	4Ale	4Alg	4AJg	4AID	l	4394	4Blc	432	402	1	8000		8C
(in.)	cerbon	••••			as CaCO ₂	Field-				COLE	Field-			3/30-po		Sat.		a
	<u>a</u>					State	Bar	Bar	Dry		State	Bar	Bar	15-Bar	Ì	Paste		<u> </u>
	Pct.	Pct.			Pct.	g/cc 1.14	<u>a</u> \c:	g/cc	g/cc		Pct.	Pct.	Pct.	<b>b.</b> /is.				L
0-2	5.63	0.421.	13				1.15		1.18	0.007	36.0	32.84	10.7	0.26e				5.
2-4	0.80	0.076	11			1.52	1.49	1.52	1.52	⊷	17.8	22.8	<b>3.8</b> ,	0.28				5. 5.
4-10	0.46	0.042	11			1.54	1.45	1.53	1.53		15.7	17.4	3.2	0.21				5.
10-14	0.17			_		1.54 1.65	1.34	1.53 1.61	1.60		9.9	13.0	3.5	0.12				6.
14-21	0.11												3.7					6.
21-32	0.05					1.70	1,34	1.69	1.70	0.002	12.7	11.2	3.6	0.10				6.
32-41	0.04					1.70 1.86	1.58	1.84	1.86	0,003	11.1	10.8	4.4	0.10		5.8		6.
41-55	0.01					1.94	1.72	1.93	1.96	0.006	11.3	11.6	4.2	0.12				6.
<u>55-62</u>	0.05					1.92	1.68	1.89	1.90	0.003	9.4	10.6	3.9	0.12				6.
62-70	0.02	l '			[ -(s)	1.91	1.68	1.87	1.91	0.006	10.6	12.4	4.3	0.14				7.0
70-80	0.01				-(s)	1.97	1.73	1.94	1.96	0.003	8.6	10.5	3.8	0.12				7.
	•	Extractal		5Bla		6ELa		ch.Car	6034	******	602a	8 <b>m</b>	8Ma	838	8103		Base sat	
Depth	6N2a	602a	6P2a	692a		Bet.		5A3a 1004:	KCl- Exct.		Bet. Tron	Resis-		Water at	Cas/Mg		503 Stan	5 斑
(in.)	Ca	Mg	Na	K	Som	-	Cattons		Al		as	PIVIE	COMMOL:	Sat.	CON PAGE		Cetton	,,,,,,
	_	l		l	mes/100 s	<u> </u>		1			Port.	obus-	mahos/	Beet.			Pct.	Po
	24.0	h a	0.1	þ.3	meg/100 g	13.9	31.0	22.2		l -	0.7	- CEE		Here.	5.2		55 44	7
0-2		E. I	ULL	D+.3							۱ ۸ ÷				l -		1,14	7
0-2		2.7					30.8	6.9		1	1 0.1							
2-4	3.8	0.9	tr	þ.1	4.8	6.0	30.8	6.9			0.7						40	6
2-4 4-10	3.8 3.1	p.9 p.6	tr tr	0.1 0.1	4.8 3.8	6.0 5.6	10.8 9.4	6.9 5.6			0.8						60	6 8
2-4 4-10 10-14	3.8 3.1 3.7	0.9 0.6 0.7	tr tr tr	0.1 0.1 0.1	4.8 3.8 4.5	6.0 5.6 3.0	10.8 9.4 7.5	6.9 5.6 5.5			0.8				3.1		60	8 9
2-4 4-10 10-14 14-21	3.8 3.1	0.9 0.6 0.7	tr tr tr 0.1	0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8	5.6 3.0 3.0	10.8 9.4 7.5 9.8	6.9 5.6 5.5 7.3			0.8				3.1 2.4			8 9
2-4 4-10 10-14 14-21 21-32	3.8 3.1 3.7 5.0 4.1	0.9 0.6 0.7 1.6 1.7	tr tr tr 0.1 0.1	0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0	5.6 3.0 3.0 2.3	10.8 9.4 7.5 9.8 8.3 9.5	6.9 5.6 5.5 7.3 6.2			0.8 0.9 0.9 0.8	8000	0.17	19.5	2.4		60 69	9
2-4 4-10 10-14 14-21 21-32 32-41	3.8 3.1 3.7 5.0 4.1 4.6	0.9 0.6 0.7 1.6 1.7	tr tr 0.1 0.1	0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0	5.6 3.0 3.0 2.3 2.3	10.8 9.4 7.5 9.8 8.3 9.5	6.9 5.6 7.3 6.2 7.5			0.8 0.9 0.9 0.8	8000	0.17	19.5			60 69 72 76 80	9
2-4 4-10 10-14 14-21 21-32 32-41	3.8 3.1 3.7 5.0 4.1 4.6 4.7	0.9 0.6 0.7 1.6 1.7 2.4 2.7	tr tr 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6	6.0 5.6 3.0 3.0 2.3 2.3	7.5 9.8 7.5 9.8 8.3 9.5 9.5	6.9 5.6 5.5 7.3 6.2 7.4			0.8 0.9 0.9 0.8 0.9	8000	0.17	19.5	2.h		60 69 72 76 80 84	9
2-4 4-10 10-14 14-21 21-32 32-41 41-55 55-62	3.8 3.1 3.7 5.0 4.1 4.6 4.7	0.9 0.6 0.7 1.6 1.7 2.4 2.7 2.8	tr tr 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6 7.3	6.0 5.6 3.0 3.0 2.3 2.3 1.9	10.8 9.4 7.5 9.8 8.3 9.5 9.5 8.7	6.9 5.5 7.3 6.2 7.4 7.4			0.8 0.9 0.9 0.8 0.9 0.9	8000	0.17	19.5	2.4 1.9 1.7 1.5		60 69 72 76 80 84 88	9999
2-4 4-10 10-14 14-21 21-32 32-41 41-55 55-62 52-70	3.8 3.1 3.7 5.0 4.1 4.6 4.7	0.9 0.6 0.7 1.6 1.7 2.4 2.7 2.8 3.0	tr tr 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6	6.0 5.6 3.0 3.0 2.3 2.3	7.5 9.8 7.5 9.8 8.3 9.5 9.5	6.9 5.6 5.5 7.3 6.2 7.4			0.8 0.9 0.9 0.8 0.9	8000	0.17	19.5	2.4 1.9 1.7		60 69 72 76 80 84	9 9 9 10 10
2-4 4-10 10-14 14-21 21-32 32-41	3.8 3.1 3.7 5.0 4.1 4.6 4.7 4.3	0.9 0.6 0.7 1.6 1.7 2.4 2.7 2.8 3.0 2.6	tr tr 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6 7.3	6.0 5.6 3.0 3.0 2.3 1.9 1.4 1.1 1.3	10.8 9.4 7.5 9.8 8.3 9.5 9.5 8.7 8.8 7.9	6.9 5.5 7.3 6.2 7.4 7.4 7.4 6.4	60 inc	hes (M	0.8 0.9 0.8 0.9 0.9 0.9 0.7	6A).			2.4 1.9 1.7 1.5 1.5		60 69 72 76 80 84 88 84	991919
2-4 4-10 10-14 14-21 21-32 32-41 41-55 55-68 52-70 70-80	3.8 3.1 3.7 5.0 4.1 4.6 4.7 4.3 4.5 3.8	0.9 0.6 0.7 1.6 1.7 2.4 2.7 2.8 3.0 2.6	tr tr 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6 7.3	6.0 5.6 3.0 3.0 2.3 1.9 1.4 1.1 1.3	10.8 9.4 7.5 9.8 8.3 9.5 9.5 8.7 8.8 7.9 1.9 kg/s	6.9 5.6 5.5 7.3 6.2 7.5 7.4 7.1 7.4 6.4 ted to	60 inclu	hes (M	0.8 0.9 0.8 0.9 0.9 0.9 0.7	6A).			2.4 1.9 1.7 1.5 1.5		60 69 72 76 80 84 88 84	991919
2-4 4-10 10-14 14-21 21-32 32-41 41-55 55-62 52-70	3.8 3.1 3.7 5.0 4.1 4.6 4.7 4.3 4.5 3.8 Retios	0.9 0.6 0.7 1.6 1.7 2.4 2.7 2.8 3.0 2.6 to GIs	tr tr 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6 7.3	6.0 5.6 3.0 3.0 2.3 1.9 1.1 1.3	10.8 9.4 7.5 9.8 8.3 9.5 9.5 8.7 8.6 7.9 19 kg/	6.9 5.5 7.3 6.2 7.5 7.4 7.4 6.4 100 100 100 100 100 100 100 10	inclu	de vol	0.8 0.9 0.8 0.9 0.9 0.9 0.7	6A).			2.4 1.9 1.7 1.5 1.5		60 69 72 76 80 84 88 84	991919
2-4 4-10 10-14 14-21 21-32 32-41 11-55 15-68 12-70 10-80	3.8 3.1 3.7 5.0 4.1 4.6 4.7 4.3 4.5 3.8	0.9 0.6 0.7 1.6 1.7 2.4 2.7 2.8 3.0 2.6 to GIs	tr tr 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6 7.3	6.0 5.6 3.0 3.0 2.3 1.9 1.1 1.3 a. 5 b. 0 c. 1	10.8 9.4 7.5 9.8 8.3 9.5 9.5 8.7 8.8 7.9 Aloula Method /3-bar	6.9 5.6 5.5 7.3 6.2 7.5 7.4 7.4 6.4 ted to 382). (Method	inclu od 4Al	de vol d).	0.8 0.9 0.8 0.9 0.9 0.9 0.7	6A).			2.4 1.9 1.7 1.5 1.5		60 69 72 76 80 84 88 84	991919
2-4 4-10 10-14 14-21 21-32 32-41 41-55 55-68 52-70 70-80	3.8 3.1 3.7 5.0 4.1 4.6 4.7 4.3 4.5 3.8 Retios	0.9 0.6 0.7 1.6 1.7 2.4 2.7 2.8 3.0 2.6 to GIs	tr tr 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6 7.3	6.0 5.6 3.0 3.0 2.3 1.9 1.1 1.3 a. 5 b. 0 (c. 1	10.8 9.4 7.5 9.8 8.3 9.5 9.5 8.7 8.8 7.9 9 kg/ halcula Method /3-bar /3-bar	6.9 5.6 5.5 7.3 6.4 7.1 7.4 6.4 2 to 1382). (Netth	inelu od 4Al od 4Bl	de vol d). c).	0.8 0.9 0.9 0.8 0.9 0.9 0.7 0.9	6A).			2.4 1.9 1.7 1.5 1.5		60 69 72 76 80 84 88 84	991919
2-4 4-10 10-14 14-21 21-32 32-41 41-55 55-68 52-70 70-80	3.8 3.1 3.7 5.0 4.1 4.6 4.7 4.3 4.5 3.8 Retios	0.9 0.6 0.7 1.6 1.7 2.4 2.7 2.8 3.0 2.6 to CLs	tr tr 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.8 3.8 4.5 6.8 6.0 7.2 7.6 7.3	6.0 5.6 3.0 3.0 2.3 1.9 1.1 1.3 a. 5 b. 0 (c. 1	10.8 9.4 7.5 9.8 8.3 9.5 9.5 8.7 8.8 7.9 19 kg/ Method Method 73-bar /3-bar	6.9 5.6 5.5 7.3 6.2 7.5 7.4 7.4 6.4 ted to 382). (Method	inelu od 4Al od 4Bl	de vol d). c).	0.8 0.9 0.9 0.8 0.9 0.9 0.7 0.9	6A).			2.4 1.9 1.7 1.5 1.5	200 Re	60 69 72 76 80 84 88 84	991919

^{0-2 2.74 0.09 1.32} 2-4 1.06 0.11 0.58 4-10 0.90 0.13 0.52 10-14 0.98 0.16 0.63 14-21 1.14 0.14 0.58 21-32 1.09 0.14 0.63 32-41 0.86 0.10 0.51 41-55 0.93 0.11 0.53 55-62 0.80 0.10 0.44 62-70 0.85 0.08 0.49 70-80 0.74 0.10 0.44

Soil: Milaca Loam.

Soil Nos.: 8634N-48-1.

Area: Mille Lacs County, Minnesota.

Location: NWt NEt SWt Sec. 22, T38N, R27W, 300 feet SW of fence and field road to abandoned farmstead and 350

feet W by NW of pasture gate by abandoned farmstead. Vegetation: Bluegrass, thistles, scattered oaks Parent material: Red till - heavy sandy loam. Physiography: Slope bordering drainageway.

Slopa: 4 to 5 percent. Aspect: South-southwest. Erosion: None.

Drainage: Well drained. Permeability: Moderate. Ground water: Deep.

Moisture: Moist.

Stoniness: Many in profile. Described by: W. W. Anderson. Sampled October 2, 1963, by W. W. Anderson, M. F. Grimes, R. S. Farnham, G. Holmgren and R. L. Arve.

**Horizon** 

0 to 2 inches, black (10YR 2/1) loam to very fine sandy loam; moderate fine granular structure: Αp LSL 18886 very friable; pH 5.6; clear smooth boundary.

**A21** LSL 18887 2 to 4 inches, very dark grayish brown (10YR 3/2) grading to dark brown (10YR 3/3) loam to very fine sandy loam; weak to moderate medium and thin platy structure; very friable; black (10YR 2/1) wormcasts; pH 5.8; clear smooth boundary.

A22 LSL 18888

4 to 10 inches, brown (10YR 5/3) grading to brown (7.5YR 5/3) with depth loam to very fine sandy loam; very weak medium and thin platy structure; very friable; few very dark gray (10YR 3/1) wormcasts in upper part of horizon; lower part of horizon has slightly coarser sands; pH 5.8; clear smooth boundary.

LSL 18889

LSL 18890

LSL 18891

10 to 14 inches, reddish brown (5YR 4/4) sandy loam; very weak medium platy breaking to weak medium and fine subangular blocky structure; frigble; pH 6.0; clear smooth boundary,

**B21** 

14 to 21 inches, reddish brown (5YR 4/4) to dark reddish brown (5YR 3/4) sandy loam; weak medium platy breaking to weak fine subengular blocky structure; friable; slightly brittle in place; pH 6.2; clear smooth boundary.

R22

21 to 32 inches, dark reddish brown (SYR 3/4) weak sandy loam with pockets of loamy sand; weak medium platy breaking to weak fine subangular blocky structure; friable, very slightly brittle in place; pH 6.2; clear smooth boundary.

Bx1

Bx2

32 to 41 inches, dark reddish brown (5YR 3/4) sandy clay loam; moderate medium platy structure; firm, brittle; thick and patchy clay skins in rock sockets and upper surface of some of the plates; pH 6.2; clear smooth boundary.

LSL 18892

41 to 55 inches, reddish brown (5YR 4/3) sandy loam; moderate to strong thin and medium platy

LSL 18893

structure; firm; pH 6.4; clear smooth boundary.

Clx LSL 18894 55 to 62 inches, dark brown (7.5YR 3/4) heavy sandy loam; firm with friable pockets; pH 6.4; clear smooth boundary. Structure was not described.

C2x

C3x

62 to 70 inches, reddish brown (5YR 4/3) heavy sandy loam; massive; firm; pH 6.4.

LSL 18895

70 to 80 inches, dark brown (7.5YR 4/4) heavy sandy loam; massive; firm; pH 6.4.

LSL 18896

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, HTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA SOIL CLASSIFICATION-TYPIC ARGIAQUOLL FINE MONTHORILLONITIC, MESIC SERIES - - - - - - - MINNETONKA COUNTY - - - BLUE EARTH SOIL NO - - - - - \$69MN-7-12 GENERAL METHODS- - -1A, 1818, 2A1, 2B SAMPLE NOS. 698840-698848 (A) JULY 1976____ 69L948-69L951 (----) FARTICLE SIZE ANALYSIS, LT 2MM, 3A1, 3A1A, 3A1B ----- SAND -----) (---SILT----) FARL INTR FINE NON-801 005- SAND .Z-002 2--1 .02 2- .05- LT TΩ CLAY BAR ì CLAY TO PCT LT ZMM - - -) PCT PÇT CLAY CM 21.6 48.1 20.4 46.7 1.4 2.6 3.3 7.8 6.5 16.1 32.0 10-0 15.1 27.3 0.52 30.3 16.8 000-23 AP 32.9 023-33 AlZ 15.4 <u>, 11 / </u> 25.3 34.5 3.2 7.0 11.7 28.5 10.6 0.48 048-59 40.2 B21TG 6.9 6.5 7.7 1.3 2.1 1.8 3.0 3.9 27.3 26.8 17.1 15.8 059-79 B22TG 24.0 38.7 37.3 9.0 11.4 23.7 59 0.48 22.3 25.9 31.4 7.6 21.7 23.1 25.6 079-102 823TG 37.2 35.4 40.5 25.1 21.7 10.4 62 3.2 3.9 9.3 9.5 25.9 18.2 102-122 2B3TG 38.7 0.51 9.2 9.4 22.2 43 0.52 2**C 1**G 35.3 12-7 21-9 10-5 9.5 138-168 2C2G 32.4 44.8 22.8 2.0 3-0 12.7 28-2 0.61 (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)( BUI VOL. (-----) 4A1D GT GT 75-20 20-5 5-2 LT 20-2 1/3-2 75 -074 PCT BAR - - -) BULK DENSITY -WATER CONTENT-CARBONATE (- -PH - -) DEPTH 1(- -4B1C 1/3-8C1A 8C1E 4A1H 4D1 OVEN COLE 481C 482 15-4C1 6E18 3ALA 1/10 BAR LT 2 LT BAR DRY CH/ H20 CACL PCT (- - - PCT LT 75 - - - ) LT20 G/CC G/CC PCT PCT CM PĆŤ CM PCT 000-23 6.0 023-33 033-48 048-59 TR TR 1.23 1.20B 63 1.42 0.050 32.3 31.6 15.8 0.20 2.90 5.9 TR 78 5.6 0 0 15.6 77 1.308 059-79 ٥ 79 1.308 17.A 5.3 18.9 1.76 0.086 30.6 5.4 1.37 079-102 0 0 80 102-122 1.26 1.52 0.066 36.6 35.8 0.21 1.20 TR 122-138 138-168 72 72 1.30B 1.37 7.6 0 2 17.6 1-46 0.021 30-1 29.0 0.20 7.8 1.80 PHOS (--EXTRACTABLE BASES 584A--) ACTY
651A 6N2E 602D 692B 602B 6H2A
TOTL CA NG NA R SUM BACL AL 661D KCL DEPTH (ORGANIC MATTER ) IRON (CAT EXCH) RATIO RATIO ÇA SF (BASE ŞAT) 6BlA 5A3A EXTB 6A1A C/N 6C2B 6H2A BACL 5A6A 601 803 5C3 ŠC1 NHAC NHAC CA EXTB NHAC SAT DRCN NITG FXT TEA EXT ACTY TO TO MHAC AC TY CARB G- -PCT (- - - - - - - - MEQ / 100 - ) CLAY PCT CM PCT PCT PCT PCT PCT 3.330 0.264 3.35 1.81 0.246 023-33 14 033-48 13 0.105 11 059-79 0.91 079-102 0.78 102-122 0.52 122-138 0.26 138-168 0.39 ---- SATURATION EXTRACT 8A1----- ATTERBERG NA SE DEPTH (SATURATED PASTE) NA SALT GYP 8D5 BAIA 6NIB 601B 6PIA 6QIA 6IIA 6JIA 6KIA 6LIA 6MIA 4FI 4F2 EC CA MG NA K CO3 HCO3 CL SO4 NO3 LQID PL\$T 6F1A 5D2 SEL SCIB 84 TOTL CA MG CL SO4 HZO ESP SAR MMHOS/ LMIT INDX OHM-SOLU t - - - - - - - - MEQ / LITER - - - - - - - - - PCT PCT PC T CM 000-23 023-33 033-48 079-102 102-122 3000 2000 6.3 122-138 2000 7.5 138-168 3000 (A) BULK DENSITY AND WATER CONTENT ANALYSES BY THE SOIL SURVEY INVESTIGATIONS UNIT, LINCOLN, NE. UNLESS OTHERWISE INDICATED REMAINING ANALYSES BY THE SOIL SURVEY INVESTIGATIONS ANALYSES BY MINNESOTA AGRICULTURAL EXPERIMENT STATION. ST PAUL, MN. MINERALOGY BY X-RAY ANALYSIS. TOTAL PHOSPHORUS BY NITRIC-PERCHLORIC DIGESTION. AVAILABLE UNIT, BELTSVILLE, MD. ESTIMATED. PHOSPHORUS BY BRAY'S NO 1 EXTRACTANT. MICRO-PENETRATION RESISTANCE - A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10-BAR, A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE TOTAL AVAIL DEPTH -MINERALOGY-MONT VERM ILLITE KADL QUARTZ {--LBS/A-- } --PCT LT -002MM-FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH. 000-23 25 10 0 1200 18 (D) ORGANIC CARBON IS 23 KG/M SQ TO A DEPTH OF 1 M (6A). 023-33 033-48 868 048-59 059-79 15 5 5 722 75 0 14 079-102 102-122 1028 6

122-138 138-168 Pedon classification: Typic Argiaquell; fine, montmorillenitic, mesic.

Series classification: Same .

Soil: Minnetonka series .

Soil No.: 69MN-7-12. Location: Elue Earth County, Minnesota; SEL/4 of SwL/4, Sec. 34, T. 108 N., R. 26 W. (Mankato Twp.); about 200 feet north and 100 feet west of the southeast corner of the southeast 1/4. About 93 deg.

57 min. west longitude and lik deg. 7 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 16, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal smoofall - 40.

Parent material: Moderately deep, fine textured lacustrine sediments over calcareous, loamy glacial till (New Ulm), Des Moines Lobe, Late Wisconsin age.

Physiography: Central Lowlands; glacial Lake Minnesota Flain in the Eluc Earth Till Flain of H. E.

Wright (1972). Landscape setting: About 1/2 percent, slightly convex slope. General topography is nearly level with few slight rises and depressions. Relative relief in the immediate vicinity is about 5 feet, but the nearby Le Susur River is incised about 120 feet into the plain. Elevation at the site is about 1,000 feet. Major associated soil on the landscape near the site is the Shorewood series.

Vegetation: Recently plowed grass-legume field. Native vegetation probably was tall grass prairie later succeeded by wixed hardwood forest.

Erosion: Slight. Permeability: Moderately slow in upper part, moderate in the glacial till.

Described by: R. J. Edwards and H. R. Finney on October 2h, 1969. Sampled by: L. Shields, R. J. Edwards, J. F. Cummins, J. J. Murray, and H. R. Finney on October 24, 1969.

698840 0 to 23 cm (0 to 9 inches) Black (10TR 2/1) silty clay loam, dark gray (10TR 4/1) dry; moderate very fine subengular blocky structure; friable, plastic and alightly sticky; common

Garates bearing

Pedon classification: Typic Argiaquoll; fine, montmorillonitic, mesic.

Series classification: Same. Soil: Minnetonka series.

Soil No.: 69MN-7-12.

Location: Blue Earth County, Minnesota; SE1/4 of SW1/4, Sec. 34, T. 108 N., R. 26 W. (Mankato Twp.); about 200 feet north and 100 feet west of the southeast corner of the southeast 1/4. About 93 deg. 57 min. west longitude and 44 deg. 7 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 46, winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal snowfall - 40.

Parent material: Moderately deep, fine textured lacustrine sediments over calcareous, loamy glacial till (New Ulm), Des Moines Lobe, Late Wisconsin age.

Physiography: Central lowlands; glacial Lake Minnesota Plain in the Blue Earth Till Plain of H. E. Wright (1972).

Landscape setting: About 1/2 percent, slight convex slope. General topography is nearly level with few slight rises and depressions. Relative relief in the immediate vicinity is about 5 feet, but the nearby Le Sueur River is incised about 120 feet into the plain. Elevation at the site is about 1,000 feet. Major associated soil on the landscape near the site is the Shorewood series.

Vegetation: Recently plowed grass-legume field. Native vegetation probably was tall grass prairie later succeeded by mixed hardwood forest.

Drainage: Poorly drained. Erosion: Slight.

ʹ . Permeability: Moderately slow in upper part, moderate in the glacial till.

Described by: R. J. Edwards and H. R. Finney on October 24, 1969.

Sampled by: L. Shields, R. J. Edwards, J. F. Cummins, J. J. Murray, and H. R. Finney on October 24.

Remarks: Colors are for moist soil. These samples were obtained from a pit with approximate dimensions of  $l \times 3 \times 2 m$  in depth.

Micromorphological studies were made on the B21tg, B22tg, and B23tg horizons by Gabriella Carmean under the direction of R. H. Rust. A brief summary of her findings using Brewer's terminology follows:

B2ltg horison The plasma presents a vosepic fabric, with no special orientation, mostly flecked. The skeleton is 22 percent of the volume, some of it in alteration, with no cutans around the skeleton grains. The voids are generally metavoids, chambers and vughs, connected with narrow channels and are about ll percent of the volume. There are very thin argillans on the narrow channel walls. In the matrix there are ferromanganous separations as irregular nodules and in some parts of the matrix 

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEERASKA SOIL CLASSIFICATION-TYPIC BOROHEMIST EUIC SERIES - - - - - MOOSELAKE SOIL NO - - - - - \$72MN-36-3 COUNTY - - - KOOCHICHING GENERAL METHODS- - -1A,1818,2A1,28 SAMPLE NOS. 72L600-72L603 MARCH 1977 ---- PARTICLE SIZE ANALYSIS, LT 2MM, 3A1, 3A1A, 3A1B -FINE ( --- SAND ---- )(---SILT----) FAML - - )RATIO DEPTH **HCRIZON** NON-- -) FAML INTR FINE FSI TEXT II CLAY 801 CLAY VEST 1 I • 2-C03= SAND SILT CLAY CLAY VCQS CORS MEDS FNES VFNS COSI FNST 15--005- SAND BAR .5-.25 .25- .10- .05 .10 .05 .02 -02 CLAY 2- .05- LT .05 .002 .002 1-.5 2-LT 2--0002 .002 .002 2-.1 Ť'n CLAY - - - - PCT LT 2MM - - -000-014 014-035 035-110 OA1 110-170 CONTENT~ - ~ - ) CARBONATE (- -PH - -)
12A 4C1 6E1B 3A1A 8C1A 8C1E
1- WRD LT. LT 1/1 1/2 481C 482A 1/3- 15-BAR BAR WRD H20 .002 CACL CM/ PCT (- - - PCT LT 75 - - - ) LT20 PCT CH PCT 000-014 014-035 035-110 98 110-170 EXCH) RATIO RATIO 5868 8D1 8D3 NHAC NHAC CA ) IRON PHOS (- -EXTRACTABLE BASES 584A- -) ACTY AL 6G1E KCL CAT (BASE SAT) DEPTH (ORGANIC MATTER 6C2B EXT 6N2E 6020 6P28 6928 6H1A BACL 5A3A 5F 1 5C3 5C1 6A1A NHAC SUM EXTB **EXT8** NITG TOTL CA TO NHAC CARB FE PCT PCT G- -CLAY ₽CŦ PCT PCT PCT (- - - - - - - - - - MEQ / 100 MG 1.5 000-014 014-035 035-110 110-170 18.4 12.2 21.0 12.2 1.8 32.9 103 32 50.7 136 30 170 20 53.4 116 (-----) ATTERBERG SALT DEPTH (SATURATED PASTE) NA 4F1 4F2 LQID PLST LMIT INDX 8A1A 6N1B 601B 6P1B 6Q1B BE1 BC1B REST PH 84 502 5E 805 6F1A SAR TOTL ĘC NO3 H20 ESP SOLU MMHOS/ OHM - MEQ / LITER - - - - - - - - ) PCT PCT CH ( - - -ÇM PCT PCT PPM 000-014 014-035 035-110 110-170 1200 .13 0 8300 3.7 9600 3.5 1443 885 - <del>- - -</del> ###T-04 *# 11-1-6-Fft (24820)

1-

Peden classification: Typic Borohemist; euic-

Soil: Mooselake series .

Soil No.: \$72NR-36-3.

Location: Koochiching County, Minnesota; Big Falls Experimental Forest; SE 1, SE 1, Sec. 14, T. 68 N., R. 27 W. About 48.5 deg. north latitude and about 94.2 deg. north longitude.

Climate: Humid continental. Mean annual temperature is 37 deg. F.; mean summer temperature is 64 deg. F.; mean winter temperature is 8 deg. F. Mean annual precipitation is 24 inches; mean May through September precipitation is 16 inches; total annual snowfall is about 55 inches. Frost-free period is about 100 days. Parent material: Organic soil material derived from woody, herbaceous, and mossy plants over medium textured glacial lacustrine sediments.

Physiography: Central lowlands; Agassiz Lacustrine Plain (Big Fork Valley). Area is nearly level and local relief is mostly less than 5 feet. Elevation is about 1,200 feet.

Vegetation: Mack spruce forest with about 40 percent crown cover. Sparse woody understory of labrador tea, leatherleaf, and lingonberry. The ground cover is mixed hypnum and sphagnum mosses. Basal area is about 120 sq. ft /acre. Site-index of black spruce is 29.

Size of bog: Several thousand acres - the Lake Agassiz peatlands.

Distance to adjacent mineral land: About 800 feet to low rise of mineral land that is about 50 acres in size. The mineral land is completely surrounded by peatland.

Microrelief: Common hummocks as much as 1 foot in height.

Depth to water table: At soil surface. Subsidence: None.

Observers: Described and sampled by R. S. Farnham, W. E. McKinzie, H. R. Finney, and W. C. Lynn. Tree growth measurements by E. R. Amborn and W. F. Johnston. Both operations were performed on July 25, 1972. Samples were obtained with the Macaulay peat sampler and with a spade (for the upper layers).

- O to 14 cm Brown (10YR 4/3, broken face and rubbed) fibric material, light yellowish brown (1018 6/4, pressed); about 85 percent fiber, about 65 percent rubbed; massive; sphagnum moss fiber; few woody fragments; few thin discontinuous sapric layers; about 8 percent mineral material; gradual boundary.
- Very dark grayish brown (10YR 3/2, broken face, rubbed, and pressed) hemic 14 to 35 cm material; about 60 percent fiber, about 20 percent rubbed; massive; mixed sphagnum moss and herbaceous fiber; trace of woody fragments; about 20 percent mineral material; gradual boundary.
- al 72L602 35 to 110 cm Very dark brown (10YR 2/2, broken face, rubbed, and pressed) sapric material; about 40 percent fiber, about 15 percent rubbed; massive; woody fiber; few thin reddish layers with as much as 80 percent woody fibers and fragments; few thin black (10YR 2/1) sapric layers; about 25 percent mineral material; gradual boundary.
- 22 721603 110 to 170 cm Black (10YR 2/1, broken face and rubbed) sapric material; about 20 percent fiber, about 5 percent rubbed; massive; mixed herbaceous and woody fiber; two thin layers containing mostly woody fiber and fragments; about 35 percent mineral material in upper part increasing to about 50 percent in lower part; abrupt boundary.
- IIA1b (not sampled) 170 to 175 cm Black (N 2/) sandy clay loam; massive; slightly sticky; abrupt boundary.
- (not sampled) 175 to 185 cm Oreenish gray (50Y 5/1) sandy clay loam; slightly sticky.

Remarks: Samples for determination of bulk density were collected at depths of 0-14, 25-30, 30-35, and 130-145 (153 cc), the latter with the Macaulay sampler. Bulk samples were collected at depths of 0-14, 14-35, 35-110, and 110-175 cm. Samples primarily for determination of fiber content were collected at depths of 0-14, 14-35, 35-50, 80-85, 120-125, 130-135, and 150-155 cm. The 35 to 110 cm layer qualifies as hemic material according to laboratory analyses. SOIL Bock fine sandy loam SOIL Nos. S63MN-5-1 LOCATION Benton County, Minnesota

SOIL SURVEY LABORATORY Lincoln, Nebraska

_ LAB. Nos. <u>1,8848-18856</u> August 1967

General Methods: 1A, 1B1b, 2A1, 2B

General	Methods:	1A,	1В1ъ,	2Al, 2	213													
			Total		Τ.				s and part	icle diamet		3A1.				1 0.	fu	
			TOTAL	г		1	1	Sand	I	- Si	nt	ł				3.B3.	rse fragme   3382	nrs <u>ح A ہے</u> ا
Depth	Horizon	Şand	Silt	Clay	Very	Coarse	Medium	Fine	Very fine		Int. III	int. 🎞				2-19	2-19	
(in.)		(2-0.05)	(0.05 0.002)	( < 0.002)	(2-1)	(1-0.5)	(0.5-0.25)	(0.25-0.1)	(0.10.05)	0.05-0.02	(0 02-	(0.2-0.02)	(2-0.1)			Wt.	Vol.	
			0.002)	l	(5 2)					ı	0.002)	'	_			Pet.	Pct.	
	+		h0 =	100	h -	<u> </u>	t. of -< 2		120.1	132.2	00 lt	207 5	30 0					<del></del>
0-6	App		38.1	12.9	1.1	6.6	11.5	19.7 19.6	10.1	17.7	20.4	37.5	38.9			2	1	
6-10	A21g		38.3			6.9	11.3	19.6	10.5	17.5	20.8	37.8	39.9			2	1	
10-13	A22g	52.7a	36.0	11.3	2.1	6.1	10.Š	21.7	32.0	17.3	18.7	40.7	40.7			14	9	
13-18			31.5	12.9	3.2	5.8	20.6	22.9	13.1	15.2	16.3	40.6	42.5			13	9	
18-30	182	51.0a	29.0		3.2	8.1	12.4	24.3	13.0	13.5 14.6	15.5 15.4	39.0	48.0			15 12	10	
30-37	Perl		30.0	8.0	4.0	8.7	12.9	23.6	12.8			39.6	49.2			10	7	
37-45	Bx2		33.2	6.5	2.5	7.3	12.0	24.3	14.2	16.3	16.9	43.2	46.1 48.0			170	န်	
45-60	CLx		32.2	7.1 8.4	3.8 4.4	8.5 8.4	12.4 12.1	23.3 22.2	12.7	15.0 14.4	17.2 17.6	39.8   38.5	47.1			12	9	
<u>60-76</u>	C2x	<u>59.6ъ</u>	32.0	0.4	***	0.4	22.1	22.2	12.5	,14.4	11.0	30.5	71,1			<u> </u>		
	6Ala	6Bla		Carbo	hete	<u> </u>		Bulk densit		). 72	 	Vater conte	nt .			<u> </u>	pH	_
					aco ₂	4Ala	4Ald	4Ald	4Alb	4D1.	4B4	4Blc	4B2	4C1		8спь	Pn	8C1s
Depth	Organic	Nitrogen	C/N	6ЕТЬ	3A1a	Field			Air-	COLE		1/3-	15-	1/3- to		Sat.		1 00.26
(in.)	carbon			6E2a	<0.002	State	1/3-   bar	1/3- bar	dry	COLLE	State	bar	par To-	1.5-bar		Paste		(1:1)
	<u> </u>			<2mm.	mm.	S COR COE	_	Dai	ary		3 CB CE	Dell	OWI	1.5- 04.1		ras ve		
	Pct	Pct.		Pet.	Pct.	g/cc	d. g/cc	g/cc	g/cc	1	Pct.	Pct.	Pct	in./in.				
A 6		D.286	10	1	ret.	1.21	1.23	1.24	1.29	0.014	29.6	27.9	10.2	0.22		-	t	5.5
0-6 6-10	3.52 1.34	0.095	12 14	1	1	1.60	1.58	1.60	1.60		16.0	17.2	6.0	0.18				5.5 5.3
10-13	0.48	0.040	12			1.61	1.47	1.61		0.003	13.7	13.8	5.1	0.13				5.0
13-18	0.42	0.030	14			1.68	1.53	1.68		0.003	13.8	13.3	5.8	0.12				6.5
18-30	0.23	٠.٠٠		-(s)		1.72	1.53e	1.70e			10.1	12.51		0.124				7.3 7.7
30-37	0.13			- (#)		1.80	1.65e	1.79e	1.81	0.003	9.9	11.61		0.13				7.7
37-45	0.12			tr(s)	_	1.81	1.66e	1.79e		0.007	12.0	12.11		0.15g		7.4		7.8
45-60	0.08			2`	_	1.99	1.82e	1.98e	1.98	-	9.6	9.41	3.3	هَند.٥		'		8.5
60-76	0.12			3	_	1.99	1.78e			0.003	10.1	9.71		0.116				8.5
Depth (in )	6N2s.	Extractal 602a	6P2s	81a 60/2a K	Sum	Ext.		cch.Car 5Ala NH ₄ OAc			6C2a Ext. Iron	8E1 Resis- tivity	SBla Elec. Cond.	8B Water at Sat.	8D3 Ca/ Mg		Base set 5C3 Sum Cattions	uration 5C1 NEU ₄ QAc
	V.	*** <u>*</u>		"	Som	HELLING	Caucus		AL		Fe	ohms -	nunhos/	, DEL C.			<b>G</b>	
	-	<u>'</u>		<u> </u>	meg/100 (	·				1	Pct.	cm.	cm.	Pet.			Pct.	Pct.
0-6	14.3	β.6	þ.3	b.2	18.4	11.2	29.6	19.1	-		0.7				4.0		62	96
6-30	7.4	5.8	0.2	5.1	10.5	6.5	29.6 17.0	ñ.8	0.1		0.9				2.6		62	96 89
10-13	5.1	2.8 2.7	b.1	5.1	8.0	5.4	13.4	8.8	0.1		1.0				1.9		60	91
13-18	6.3	3.5	0.2	0.1	10.1	3.5	13.6	9.6			1.2				1.8	—"	74	105
18-30	6.0	5.3	0.1	0.1		2.3	13.6 11.8	8.6			1.1				1.8		81	110
30-37	4.9g	2.71	0.1	<b>p.1</b>	9.5 7.8	1.4	9.2	7.3			0.9				1.8		85	107
37-45	3.9h	1.61	0.1	7.0	5.7			6.0			0.7	6700	0.30	19.8	2.4			
45-60	4.4h	1.41	0.1	þ.1	6.0			5.3			0.7				3.1			
60-76	4.30	1.61	0.1	D.1	6.1			5.0			0.6				2.7			
	Ratios	to Cla	y 8D1	•		a. ]	Pe-Mon	odules	25-	 35 perv	cent (2	2-0.5 ¤	ma ).			<u>l</u> ,		
	_		15-	1	1	ъ. (	Carbone	ate gra	ins: ]	L-5 per	rcent :	(1-0.05	5 mm.).	,				
Depth	NH),OAc	Ext.	Bar			c. :	13 kg/1	rF to 6	O incl	aes (Mi	ethod (	5A).						
(In.)	CEC	Iron	Water			a. 1		ated to		ide vo	lume b	ıt not	weight	tofr2∼	to 19	— 111111 Yo	ateria.	ı
							(Metho	od 3082)	).									
	<u> </u>					e. :	1/10-ы	ar (Met	hod 4	Alg).								
0-6	1.48	0.05	0.79			f. :	1/10-Խ	ar (Met	hod 4	Blc).								
6-10	1.04	0.08	p.53		1	g. :	1/10- ·	to 15-t	ar (Ma	thod i	4C2).							
10-13	0.78	0.09	p.45	1	<u> </u>	h. :	NH ₁ C1-1	EtOH ex	tract	(Meth	od 6N3							
13-18	0.74		0.45		1	1. I	NEQ_C1_	etOH ex	ctract	(Meth	od 603	A).						
18-30	0.86		0.47		1	1												
30-37	0.91		0.46	1	↓	1												
37-45	0.92	D.11	0.49	1	1	1												
					1													
45-60	0.75	0.10	0.46															
60-76			0.46															

Soil classification: Aquic Fragiboralf; coarse-loamy, mixed.

Soil: Mora Series. Soil: S63NN-5+1. Area: Benton County, Minnesota.

Location: SEt SWt SWt Sec. 13, T37N, R29W, 300 feet north of road and 900 feet east of fence between pasture

and cropland.

Vegetation: Pasture - bluegrass and redtop with scattered oak and elm.

Parent material: Red till - sandy loam.

Physiography: Ground moraine

Slope: 1 percent. Aspect: South.

Erosion: None. Drainaga: Somewhat poor.

Permeability: Moderately slow. Ground water: 48 inches.

Moisture: Very moist. Stoniness: Stony.

Roots: Common to 6 feet with no apparent restriction

Sampled September 30, 1963, by W. W. Anderson, M. F. Grimes, R. Farnham, M. Ziebell, G. Holmgren, and R. L. Juve.

Described by: W. W. Anderson.

<u>Horizon</u>

Ap 0 to 6 inches, very dark gray (10YR 3/1) to black (10YR 2/1) fine sandy loam to loam with few LSL 18848 medium distinct dark reddish brown (5YR 3/2) mottles; cloddy; friable; pH 5.8; abrupt wavy boundary.

A21g LSL 18849 6 to 10 inches, dark gray (10YR 4/1) to very dark gray (10YR 3/1) fine sandy loam to sandy loam with common fine distinct dark brown (10YR 4/3) and common fine faint dark grayish brown (10YR 4/2) and very dark grayish brown (10YR 3/2) mottles; moderate to weak thin platy structure; very friable;

many bleached sand grains; pH 5.4; gradual wavy boundary.

A22g LSL 18850 10 to 13 inches, gray (10YR 5/1) to dark gray (10YR 4/1) fine sandy loam with common fine distinct dark brown (7.5YR 4/4) and common fine faint dark gray (5YR 4/1) mottles; weak medium platy structure;

more bleached send grains than above; pH 5.4; clear smooth boundary.

LSL 18851

13 to 18 inches, dark gray (10YR 4/1) and brown (7.5YR 4/4) heavy loam; A2 material is dark gray (10YR 4/1) with moderate thin and medium platy structure; remmants of the B are brown (7.5YR 4/4) with weak medium subangular blocky structure; friable; common fine distinct dark brown (10YR 4/3) and dark grayish brown (10YR 4/2) mottles; vesicular; pH 5.4; gradual wavy boundary.

meridadada bases /7 cm 9/// midda t

LSL 18852 loam; weak thick platy structure; friable; moderate clay films in patches on upper side of plates; pH 6.6; gradual wavy boundary.

30 to 37 inches, reddish brown (5YR 4/3) sandy loam to sandy clay loam with many medium faint dark LSL 18853 brown to brown (7.5YR 4/4) and reddish brown (5YR 4/4) mottles; weak thick platy structure; friable, firm in place; common thick patchy clay films on top of plates with thick clay films in small root channels; pH 6.8; gradual wavy boundary.

Bx2 37 to 45 inches, reddish brown (5YR 4/3) sandy loam with few fine faint reddish brown (5YR 4/4) LSL 18854 and reddish gray (5YR 5/2) mottles; strong thin platy structure; friable, firm in place; few thin patchy clay films on surface of plates; pH 6.8; clear smooth boundary.

45 to 60 inches, reddish brown (5YR 4/3) sandy loam; strong thin platy structure; frigble, firm LSL 18855 in place; effervesces with acid; gradual smooth boundary.

SOIL CLASSIFICATION: Aquic Fragiboralf; coarse-loamy, mixed

SOIL Mora Series SOIL Nos. S63 MN-5-2 LOCATION Benton County. Minnesota

SOIL SURVEY LABORATORY LIncoln, Nebraska LAB. Nos. 18897-18905 August 1967

General Methods: 1A, 1Blb, 2A1, 2B

	6А1а	630a	]	Carbo	nate	4Ala		Bulk densit	,	4111	w	ater conter	nt	401	80	PH	801.0
31-48 48-75 75-99	Clax C2x C3x		30.4 27.6 33.7	4.6 5.5 8.0	3.6 4.6 3.6	8.7 9.3 8.2	13.8 14.2 12.0	25.6 25.7 22.5	13.3 13.1 12.0	14.4 14.4 15.7	16.0 13.2 18.0	40.9 40.7 39.3	51.7 53.8 46.3		10	8 7	
12-17 17-24 <u>24-31</u>	B1 B21 B22	50.2	31.3 28.3 29.0	13.1 11.9 10.8		6.5 7.9 9.2	10.4 12.2 12.5	22.0 23.1 21.7	12.4 12.1 11.9	16.1 14.6 14.2	15.2 13.7 14.8	39.9 38.5 37.0	43.2 47.7 48.3		13 14 12	9	
0-4 4-7 7-12	Ap A21 A22	48.6 53.6 53.8	40.0 39.2 37.4	11.4 7.2 8.8	2.2 3.6	6.6 7.4 7.0	10.7	19.4 20.8 21.0	10.0 11.5 11.5	18.1 18.8 17.9	21.9 20.4 19.5	37.7 40.7 40.0	38.6 42.1 42.3		1 6	_	
Depth (In.)	Horizon	Send (2-0.05)	0.002)		Very coarse (2-1)	 Pc	l t. of << 2	Fine (0.25–0.1)		I	0.002)				3E 2-1 Wt. Pct	1 3B2 9 2-19 Vol	
			Total					Size clas	s and parti	cle diamete Si			<u>3A1</u>		I	Coarse fragm	ients 🔈 🕰

Soil classification: Aquic Fragiboralf; coarse-loamy, mixed. Soil: Mora series.

Soil Nos.: 363 MN-5-2.

Area: Benton County, Minnesota.

Location: SWk SWk Sec. 13, T37N, R29W, 300 feet north of east-west road, 40 feet east of fence line.

Vegetation: Bluegrass pasture.

Parent material: Red till - sandy loam.

Physiography: Very gently undulating till plain.

Slope: 1 to 2 percent. Aspect: South.

Erosion: None.

Drainage: Moderately well. Permeability: Moderate. Ground water: Deep.

Moisture: Moist.

Root distribution: Common to 36 inches, very few below.

Stoniness: Common in pit.

Sampled September 30, 1963, by W. W. Anderson, M. F. Grimes, R. Farnham, M. Ziebell, G. Holmgren and R. L. Juve. Described by: W. W. Anderson.

## Horizon

0 to 4 inches, black (10YR 2/1) to very dark gray (10YR 3/1) loam; moderate medium granular Ap LSL 18897 structure; very friable; a few brown (10YR 5/3) wormcasts: abrupt smooth boundary.

A21 4 to 7 inches, dark grayish brown (10YR 4/2) with some dark gray (10YR 4/1) fine sandy loam with LSL 18898 common fine distinct dark yellowish brown (10YR 4/4) and common fine faint dark brown (10YR 4/3) mottles; weak to moderate medium and thin platy structure; very friable; clear smooth boundary.

7 to 12 inches, brown (10YR 5/3) fine sandy loam with common fine faint yellowish brown (10YR 5/4) and dark brown (10YR 4/3) mottles; weak to moderate medium and thin platy structure; friable; clear A22 LSL 18899 smooth boundary.

12 to 17 inches, dark brown (7.5YR 4/4) to reddish brown (5YR 4/4) loam with common fine faint brown (7.5YR 5/2-5/4) and reddish brown (5YR 4/3) mortiles; weak medium and fine subangular blocky LSL 18900 structure; friable; clear wavy boundary.

B21 17 to 24 inches, variegated reddish brown (5YR 4/3 and 4/4) and 10 percent reddish gray (5YR 5/2) LSL 18901 sandy clay loam with few fine faint dark reddish brown (5YR 3/4) mottles; weak medium and thin platy structure; friable; gradual wavy boundary.

24 to 31 inches, variegated reddish brown (5YR 4/3 and 5/3) sandy clay loam with few fine faint B22 LSI, 18902 yellowish red (5YR 4/6) mottles; weak medium and thick platy structure; friable; few thin patchy clay films on top surface of plates and in some pores; clear irregular boundary.

31 to 48 inches, dark reddish brown (5YR 3/3) and reddish brown (5YR 4/3) sandy loam with few Clv LSL 18903 coarse distinct reddish brown (5YR 5/3) mottles; strong thin and medium platy structure; friable to firm, very brittle; diffuse boundary.

C2x 48 to 75 inches, dark reddish brown (5YR 3/4) and reddish brown (5YR 4/3) sandy loam; moderate LSL 18904 thin and medium platy structure; firm, and brittle; abrupt smooth boundary.

75 to 99 inches, reddish brown (5YR 4/3) sandy loam; strong medium platy breaking to fine angular blocky structure; firm, and brittle; slight effervescence with acid. Sampled at 75- to 82-inch depth. LSL 18905

____ SOIL Nos. S63MN-5-4 LOCATION Benton County, Minnesota SOIL ___ Mora taxadjunct LAB. Nos. 18906-18915 SOIL SURVEY LABORATORY ________ Incoln, Nebraska August 1967 General Methods: 1A, 1Blb, 2AL, 2B 3Al Size class and particle diameter (mm) Total Sand Coarse fragments 242 332 3B1 Silt Medium Fine Very fine Int. III int. II Depth Horizon Sand Clay Coarse coarse (2-1) 2-19 2-19 (2-0 05) (0 05-0.002) (1-0 5) (0 5-0 25) (0 25-0 1) (0 1-0.05) (0.05-0 02) (0 02-0.02) (0.2-0.02) (2-0 1) (ln.) ( < 0 002) Wt. Vol. Pct of -< 2 Pet. Pet. 44.7 50.6 8.0 10.5 18.4 12.0 20.4 42.4 6,2 8.8 17.8 24.6 35.6 0-2 16.9 18.4 2-4 <u> Ā2</u>1 40.1 1.6 7.0 9.6 23.2 36.7 41.0 1 9.3 11.3 22.3 53.7 54.2 57.5 40.7 5.6 6.8 3.0 7.4 21.1 40.2 42.8 6 h A22 10.9 4-10 39.0 33.5 28.1 20.8 11.3 17.7 42.9 39.8 9 6 10-14 A23 11.3 22.5 11.9 21.4 18.3 13.3 40.1 44.2 11 3.2 7.2 3.1 8.0 7 14-23 B21 9.0 15.2 23-32 32-39 39-49 49-58 44.4 3.1 35.4 37.9 56.2 11.9 12.8 15.3 12 ٥ Bx). 12.5 56.7 30.8 11.5 21.8 14.2 16.6 44.2 12 9 Bx2 7.9 44.9 44.8 31.7 31.9 33.1 4.3 3.4 7.9 7.8 11.1 21.6 12.2 14.2 17.5 17.8 14 10 mx 57.1 11.2 37.6 22.3 14.1 38.0 12 9 57.2 56.9 10.9 11.3 11.1 12.4 C2x 12.4 44.5 13 īŌ 58-65+ 10.0 3.8 7.8 14.6 18.5 36.2 C3x 6Ala ćπ. Carbonate **Butk density** 4m Water content pΗ as CaCO2 BA7a PLA 4A16 4А1Ъ 4B4 4Rlc 432 4Cl 8cla Organic C/N Denth Nitrogen Air-COLE Field-1/3-1/3-to 6**ЕЦ**ь 3Ala Field-1/3-15-1/3-(In ) (1.1)co.co2State Dry State Bar Bar 15-Bar Bar 6**≊**2a. Ъ < 2mm 1000. Ġ g/00 1.25 Pct Pct Pct Pet. Pet. <u>ln</u>. 5.5 5.6 1.28 1.29 27.5 26.5 10.1 0.21 0.284 0-2 3.91 14.5 1.66 1.67 5.4 0.15 1.68 14.7 2-4 1.21 0.097 12 1.68 5.6 5.7 0.18f 13.3e 4-10 0.23 0.020 1.77 1.69d 1.668 1.764 1.75 11.2 2.7 0.16 1.78 1.77a 1.77 11.7 13.7e 14.le 3.3 4.6 0.175 10-14 1.594 1.714 1.71 1.66 1.82 1.86 6.0 1.72 12.4 0.15£ 14-23 0.12 7.2 6.2 1.86 0.006 11.3 12.0 0.08 7.3 8.0 1.86 23-32 0.09 <u>- (a )</u> 12.2 1.87 11.7 1.86 0.30 32-39 39-49 0.05 1 1.67 1.83 0.006 8.1 11.4 1.90 1,68 1.87 1.91 0.006 11.0 5.1 0.11 1 0.02 8.2 8.5 1.744 1.914 1.95 0.006 11.9e 4.5 19-58 1.95 10.1 0.132 0.021.784 1.984 1.97 10.9e 1.98 8.9 3.9 0.13# 58-65+ 0.02 1 6Hla Cat, Erch. Cat Ext. 5A3a 5A1a cidity Sum NH₄ CAC Base saturation 8D3 Extractable bases 5Bla 503 | 501 602a 6P2a 602a 6NPa Depth O∆/Mg Storm Hilly OAc (ln.) Ca Na ĸ Cations Octions Mg Sum eq/100 g ____ 13.0 | 12.8 67 25.8 5.7 1.9 0.2 19.4 10.8 0.1 0-2 59 52 43 7.5 3.7 3.5 5.7 4.8 0.7 0.1 0.1 13.2 9.6 2-4 37 2.2 4.2 4-10 1.6 0.6 tr tr 5.9 69 3.5 6.2 7.0 5.1 2.0 50 1.1 0.1 10-14 2.2 Ю.**1** 

	Ratios t	о СПау	· 8m_		
Depth (in )	nee ₄ oac		15-Bar Water	•	
0-2	1.50		0.78		
2-4	1.03		0.58		
4-10	0.75		0.48		
10-14	0.75		0.49		
14-23	0.79		0.51		
23-32	0.83		0.46		
32-39	0.90		0.50		
39-49	0.80		0.46		
4958	0.73		0.41		
58-65+	0.69		0.39		

3.4 7.2 6.7g

5.7g 5.4g 5.5g

14-23

23-32 32-39

39-49 49-58 58-65+

2.6 6.2 4.3h

3.2h 2.7h

2.0h

0.1

0.2

0.2

0.1

0.1

0.1

0.1

0.2

0.2

0.1

0.1

0.1

Trace of carbonate in sands below 32 inches. 5.5 kg/m² to 60 inches (Method 6A).

ъ.

Calculated to include volume but not weight of 2 to 19-mm material c. (Mathod 3E2).

1.3

1.2

1.6

1.8

2.0

2.8

63 87

85 20Ġ

a. 1/10-bar (Method 4Alg). 1/10-bar (Method 4Hlc).

7.1

13.0 11.2

9.0

8.0

6.9

3.7

2.4

13.8

11.4

9.1

8.3 7.7

9.9

16.2

e. ٠.

1/10- to 15-bar (Method 402).

NEG-Et OH extraction (Method 6N3a). g.

NH, C1-EtOH extraction (Method 603a).

Pedon classification: Typic Fragiboralf; coarse-loamy, mixed . Series classification: Aquic Fragiboralfs; coarse-loamy, mixed .

Soil: Mora Taxadjunct.

Soil Nos.: 863MN-5-4.

Area: Benton County, Minnesota.

Location: NW NW NW NE Sec. 23, T38N, R29W, 225 feet south of road fence 25 feet west of two white pine.

Vegetation: Pastured woods (white oak, red oak, hard maple, ash, white pine, birch)

Parent material: Red till - sandy loam.
Physiography: Gently sloping ground moraine.

Slope: 2 percent. Aspect: South. Erosion: None.

Drainage: Moderately well. Permeability: Moderate.

Moisture: Moist.

Stoniness: Few. Described by: W. W. Anderson. Sampled October 1, 1963, by W. W. Anderson, M. F. Grimes, R. Farnham, M. Ziebell, G. Holmgren, and R. L. Juve.

<u>Horizon</u>

Ap 0 to 2 inches, black (10YR 2/1) to very dark brown (10YR 2/2) and 30% dark brown (7.5YR 4/2) fine LSL 18906 sandy loam to loam; weak medium granular structure; friable; abundant earthworms; pH 6.2; abrupt wavy boundary.

2 to 4 inches, very dark brown (10YR 2/2) to very dark grayish brown (10YR 3/2) fine sandy loam; weak thin platy structure; friable; (tongue 1 to 2 inches wide extending to 13-inch depth); clear wavy boundary.

A22 4 to 10 inches, brown (10YR 5/3 and 7.5YR 5/4) fine sandy loam with few fine faint dark brown
LSL 18908 (7.5YR 4/4) mottles (2 percent); weak to moderate thin platy structure; very friable; earthworm
holes filled with material from above; pH 5.4; clear irregular boundary.

A23
10 to 14 inches, dark grayish brown (10YR 4/2) to brown (10YR 4/3) with spots of dark brown
(7.5YR 4/4) (these are remmants of B) fine sandy loam with common medium faint dark brown
(7.5YR 4/4) and reddish brown (5YR 4/4) mottles; weak to moderate medium platy structure; very friable; (some remnants of B included but not enough to call A and B); vesicular; pH 5.4; clear wavy boundary.

B21 14 to 23 inches, reddish brown (5YR 4/3) sandy loam (more clay than above), with many fine distinct reddish brown (5YR 5/3), dark reddish brown (5YR 3/4) and yellowish red (5YR 4/6) mottles; weak medium subangular blocky structure; friable; few thin patchy clay films; pH 5.4; clear wavy boundary. This horizon was saturated.

Bxl 23 to 32 inches, reddish brown (5YR 4/3 to 2.5YR 4/4) sandy clay loam with many medium distinct ISL 18911 yellowish red (5YR 4/6) and reddish brown (5YR 4/4) mottles; weak medium platy breaking readily to weak fine subangular blocky structure; friable, firm in place; thick nearly continuous clay skins on top of plates; thick clay films in pebble sockets; pH 6.4; clear wavy boundary.

Bx2 32 to 39 inches, reddish brown (5YR 4/3 to 2.5YR 4/4) and dark reddish brown (5YR 3/3) sandy loam to LSL 18912 sandy clay loam; exterior ped dark reddish brown (5YR 3/3), interior ped reddish brown (5YR 4/3 to 2.5YR 4/4) with few fine faint 5 percent yellowish red (5YR 4/6) and reddish brown (5YR 4/4) mottles; weak to moderate medium platy structure breaks to weak fine subangular blocky structure; friable, firm in place; some very small dark colored concretions; plate surfaces appear to have thin patchy clay coatings; some vesicules 1 mm in diameter also appear to have 5YR 3/3 coatings; pli 6.8; clear wavy boundary.

Clx 39 to 49 inches, dark reddish brown (5YR 3/4) sandy clay loam; moderate medium thin platy structure; LSL 18913 firm, very firm in place; effervesces in spots with acid.

C2x 49 to 58 inches, dark reddish brown (5YR 3/4) sandy clay loam; moderate medium to thin platy L8L 18914 structure; firm to very firm in place; effervesces in spots with acid.

C3x 58 to 65 inches +, reddish brown (2.5YR 4/4) sandy loam; weak to moderate medium thin platy ISL 18915 structure; firm to very firm in place; effervesces with acid.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC MATICNAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SCIL NO - - - - - S68MN-9-1

COUNTY - - - CARLICK

GENERAL METHCCS- - - 14,1818,241,28

SAMPLE NOS. 68L1202-6EL1210

FEBRUARY 1977

DEPTH	HCR12C	N	(		· <b>-</b>		·	PARTIC	LE SIZE	ANAL	YSIS.	LT 2MM	. 3Al,	3A1A.	3A18 -		 EINE	1	DITAR
			SAND	SILT	CLAY	CLAY	vças	CORS	MEDS	FNES	VENS	COSI	FNSI	VFSI	TEXT	11	CLAY	C03-	15-
			2+	.05-	LT	LT	2-	CORS 1- .5	.5-	-25-	.10-	.05	•02	-005-	- SANC	• 2 -	TO	CLAY	BAR
C۳			1	.002	. 002	.0002			•25 801	.10 [ ] T 2	- U5 MM			-002	21		PCT	PCT	TO CLAY
CCC-1C	# 1		26.1	61.4	12.5		1-3	2.0	3.7	9.9	9.3	26.5	34.9		16-8	41.5			1.22
C TC-16 C 18-28	A21G A22		43.9	47.8	8.3		1.6	5.5 5.2 8.0 8.0	10.0	17.3	9.8	27.6	20.2	4.1	34.1	46.6 45.7			.63
C28-53	B2t		54.6	32.3	13.1		3.0	8.0	11.3	19.7	11.8	17.C	15.3						-60
C53-76	Bx1		55.5	32-6	11.5		3.5	8.0 6.3	11.0	19.3	13.7 15.0	17.6	15.0	4.2	41.8	41.3 46.1			•59 •57
C76-109			54.6	34.5	10.5		3.2	7.0			11.6		19.5		42.8	38.5			.50
147-185			54.6	37.8	7.6		4.8	6.9		20.2		17.7	20.0	5.4	41.8	41.3			.51
185-216	С		54.7	38.9	6.4		4.3	6.7	8.8	21.7	13.1	19.6	19.3		41.6	44.4			- 56
CEPTH	(PARTICL	E 51	ZE ANA	LYSIS.	MM. 3	3B, 3Bl	• 3B2	) ( BUI	LK DENS	401	){ 4810	WAT	ER COI	NTENT-		) CARBO	STAN:	(PH	4) 8015
	VCL. 1- GT G 2 7 PCT P	т	75-20	20-5	5~2	ŁT	20-2	1/3-	OVEN	COLE	1/10	1/3-	15~	WRD		LT	LT	1/1	1/2
	2 7	5				.074	PCT	BAR	DRY		BAR	BAR	BAR	CH/		2	. CO 2	H20	CACL
CM	PCT P	CT	\ 	PCT L	. 7 75 -	<del>-</del> }	£ T20						PCT	CM		PCT	PC T		
000-10	I B	C	TR	2	TK	78	2	.93	1.03	.035		54.7	15.3	.37				3.9	3.4
016-18 018-28	3 2	Ô	TR	3	2	56 60	6	1.73 1.70A	1.77	.008	16.6		4.0	.22				4.8 5.3	4.0
028-53	5	0	TR.	5	4	6C 47 47 50 46	9	1.45	1.69	.008		16.3		.13				5.3	4.5
C53-76	7	Ċ	TR	7	4	47	11	1.65	1.70	.009		15.8						5.4	4.5
C76-1C9	7	0000	TR	7	4	5 C	11	1.70	1.76	.009 .011 .012		14.4		.13				5.6 5.9	4.8 5.1
109-147 147-185	é	č	TR	6	5	46	ii	1.88	1.92	.006	11.6		3.9	.13				6.2	5.3
185-216		Č	TR	8	6	45	14						3.6					6.4	5.5
****																			
CEPTH L	ORGANIC	MATT	ER )	IRON	PHCS	(Ex	TRACT	ABLE B	ASES SE	34A	ACTY	AL	(CAT	EXCHI	RATIO	RATIO	CA	(BASE	E SAT)
	6AlA 6 ORGN N	BIA	C/N	6CZA	6SIA	6N2E	6020 MG	6PZA	602A	SHM	BACI	PG IT	5A3A FXTA	NHAC	NHVC 801	603 CA	5F Sat	5C3 EXTR	
	CARE	116		FE	TOTE	C.P	n.G	MP.	^	EXTB	TEA	EXT	ACTY	MINAC	10	τo		ACTY	HIMO
CP	PCT P	C.T		PCT	UG/G (	(			MEC	/ 10	) G-				CLAY	MG	PCT	PC T	
	9.748								•	E 6	30 4		43.9			3.6	13		18
C10-18	1.02	· C66	15	. 7	340C	- 8	• 2	•1	TK	1.1	9.0	2.2	10.1	6.8	1.06	4.0	12	11	16
		• C 1 4	•	1.5	1450	1.8	-9	• 1	TR	2.8	5.2	.7	8.C	5.4	•65 •87	2.C 1.8	33 46	35 53	52 73
C28-53 C53-76	.13			2.1	87C 175C 180C 155C	5.2 5.3	3.0	•1 •1 •1 •1 •1 •1 •1	.1	8.5	1 - 3 fi - 4	. 7	15.6 14.9	11.3	.95		47	57	75
C76+109	.C5			1.7	1800	6.0	3.2	. i	.2	9.5	4.7		14+5	11.0	1.00	1.5	5.5	67	86
109-147	.02			1.6	1550	6 . B	3.2	• 1	- 1	10.2	3 • 2			10.9			62	76 77	94 96
147-185				1.3	165C 165C	5 • 1 4 • 8	2.6		.1	7.9 7.5			9.2	7.8	1.08	2.0	62 62	82	96
185-216								•••											
DEPTH	(SATURAL 8E1 8C REST P	EC P	ASTE)	NA	NA.	SALT	GYP	(			SATUR	ATICN	EXTRAC	r 841-	~		)	ATTERE	BERG
••••	8E1 80	18	6 A	502	5E	8D5	6F 1 A	8ALA	6NIB	6018	6PLA	601A	611A	6J1A	6K1A	6L1A	6M 1A	4F1	4F2
	REST P	н	H20	ESP	SAR	SOLU		MMHGS/	LA	MG	NA	*	Ç.U.S	mu U 3	CL	364	NUS	LMIT	INDX
C۲	CM-			PCT		PPM		CM											
CCC-1C	******														+				
C1C-16																			
C18-28																			
C28-53																			
053-76 076-109	7400	5.1	16.5			20		.16											
109-147																			
147-185	ì																		
185-216	•																		
1051710	ICATION	OF 5			1N PV	LARCEAT		RITCOI	A (D)										
DEPTH	HCRIZO	gr S N (	PYROPH	(ESPHA)	TE.PHI	0) ((1)	- DI	(T) (PY	ROPHOSI	P) PY	RC C	EC							
			6C5A	6G5A	641	K 61.75		A PP+	AL AL	*L FE	TAL -	1/2							
			EXT FF	E X T A L	EXI	EXT	EX I	CLA	Y CL	AY C	، ۵ ر	X							
			PCT	PÇT	PCT	PET	PCT	Ī		FE	+AL 1	HIC							
C53-76	B211X		• ì	TR		2.1					2	206							

⁽A) ESTIMATEC.

(B) QRGANIC CARBON IS 12 KG/M SQ TG A DEPTH CF 1 M (6A).

(C) UG/G - PERCHLORIC ACID DIGESTION, AMMONIUM MOLYBDATE AND STANNOUS CHLORICE ACID COLORIMETRY. ANALYSIS BY M. SINGER INSTITUTE CF AGRICULTURE, UNIVERSITY OF MINNESCTA, ST. PAUL, MINNESCTA.

(B) SCIL SURVEY INVESTIGATIONS UNIT, BELTSVILLE, MARYLAND.

Pedon classification: Typic Fragiboralf; coarse-loamy, mixed. Series classification: Aquic Fragiboralfs: coarse-loamy, mixed Aquic Fragiboralfs; coarse-losmy, mixed. Soil: Mora taxadjunct*.

Soil No.: S68MN-9-1.

Location: Carlton County, Minnesota; N.P., N.P., S.P., Sec. 34, T. 49 N., R. 20 W.; 1,050 feet west and 60 feet south of the center of the section. About 92 deg., 52 min. west longitude and 46 deg.,

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 40, winter normal - 12, summer normal - 65; some characteristics of precipitation in inches are: mean annual - 28, May to September - 19, mean snowfall - 55.

Parent material: Reddish brown coarse-loamy glacial till of Automba phase of the Superior Lobe of

Parent material: Reddish brown coarse-loamy glacial till of Automba phase of the Superior Lobe of the Late Wisconsin glaciation.

Physiography: Central lowlands; Brainerd-Automba Drumlin Area (H. E. Wright, 1972); Drumlin field with local relief of mostly 20 to 30 feet.

Landscape setting: Site has a percent concave slope. Local relief in the vicinity of the site is about 10 feet and this pedon is on the lower part of the terrain. Elevation is about 1,310 feet.

Soils of the Ahmeek series, this series, and organic soils are dominant in the immediate vicinity. Vegetation: Plant community of deciduous-coniferous forest with mostly aspen, maples, elm and an undertermy of head. story of hazel, alder, raspberry, and sedges. Drainage: Somewhat poorly or poorly drained.

Erosion: None.

Moisture: Moist throughout.

Permeability: Moderate in upper part and moderately slow in lower part. Described by: R. R. Lewis and H. R. Finney on October 7, 1968. Sampled by: L. Shields, G. Holmgren, R. Rust, P. Nyberg on October 7, 1968.

- 6811202 O to 10 cm (O to 1 inches) Black (10YR 2/1) silt loam; moderate fine and very fine granular structure grading to weak fine and very fine granular structure in the lower part; very friable; about 25 percent roots, mostly 1 mm and ranging from 0.5 to 25 mm; about 1 percent coarse fragments mostly 2 to 5 mm; horizon ranges from 2.5 to 12 inches in thickness; thicker parts occupy widths of 1 to 2 feet; mostly clear wavy boundary, but in places irregular.
- lg 68L1203 10 to 18 cm (4 to 7 inches) Grayish brown (2.57 5/2) fine sandy losm; common fine distinct brown (2.57 5/4) mottles; moderate medium platy structure parting to weak very fine subangular blocky structure; very friable; abundant very fine and fine exped open vesicular pores mostly on upper surface of plates and a few very fine continuous vertical imped simple tubular pores; few random very fine and fine roots; about 1 percent coarse fragments, mostly 2 to 5 mm; horizon mostly ranges from 2 to 4 inches in thickness, but in places is absent; clear wavy boundary.
- 22 68L1204 18 to 28 cm (7 to 11 inches) Yellowish brown (10YR 5/4) fine sandy loam; many medium distinct strong brown (7.5YR 5/6) mottles; weak medium and coarse platy structure; very friable; abundant very fine and fine exped open vesicular pores mostly on upper surface of plates and a few very fine continuous vertical inped simple tubular pores; few random very fine and fine roots; about 5 percent coarse fragments, mostly 2 to 5 mm; about 1 to 2 percent soft dark reddish brown masses; horizon mostly ranges from 2 to 6 inches in thickness, but in a few places is absent; abrunt wavv boundarv.
- t 6811205 28 to 53 cm (11 to 21 inches) Reddish brown (5YR 4/3) sandy loam; many fine faint reddish brown (5YR 4/4) dark reddish brown (5YR 3/4) and yellowish red (5YR 4/6) mottles; moderate medium platy structure; friable; very few fine and very fine roots; very few very fine discontinuous vertical imped simple tubular pores; very few thin clay films on upper plate sur-faces; more sand grains and coarse fragments on lower plate surfaces than upper surfaces; about 0.5 percent soft dark reddish brown masses; about 5 percent coarse fragments; very few reddish gray (5YR L/2) coatings on vertical cleavage faces; gradual wavy boundary.
- d 6811206 53 to 76 cm (21 to 30 inches) Reddish brown (5YR 4/3) sandy loam; common fine faint dark reddish brown (5YR 3/4) reddish brown (5YR 4/4) and dark red (2.5YR 3/6) mottles; moderate medium platy structure parting to weak very thin platy structure; firm; ruptures abruptly under slight pressure; very few very fine and fine roots; few micro discontinuous random inped simple tubular pores; few thin clay films on upper plate surfaces; about 5 percent coarse fragments mostly 2 to 10 mm; gradual way boundary.
- BK2 68L1207 76 to 109 cm (30 to 43 inches) Dark reddish brown (5TR 3/3) sandy loam; few fine faint yellowish red (5TR 4/6) and dark red (2.5TR 3/6) mottles; strong medium platy structure parting to moderate very thin platy structure; firm; ruptures abruptly under medium pressure; very few ing to moderate very thin platy structure; ilm; ruptures acruptly under medium pressure; very iew micro and very fine roots; very few micro discontinuous random imped simple tubular pores; common thin clay films on upper plate surfaces and few thin clay films with many exposed eand grains on lower plate surfaces; about 0.5 percent of pit face has reddish brown (5YR 5/3) loamy sand horizontal and vertical streaks up to 4 cm in width; about 5 percent coarse fragments; diffuse smooth boundary.
- 23 68LI208 109 to 117 cm (43 to 58 inches) Dark reddish brown (5YR 3/4) sandy loam; moderate medium and coarse platy structure parting to weak thin platy structure; firm; ruptures abruptly under slight pressure; few discontinuous clay films on upper plate surfaces; very few thin black 0.5 to 1.0 mm circular shaped (MoO₂?) coatings; about 5 percent coarse fragments; few discontinuous (medium) sand lenses up to 2 inches thick occupying about 10 percent of pit face mostly in one part; diffuse smooth boundary.
- 6811209 147 to 185 cm (58 to 73 inches) 6811210 185 to 216 cm.(73 to 85 inches). Dark

CHECA

```
LINCOLN. NEBRASKA
                                       COUNTY - - - CARLTON
SOIL NO - - - - - 568MN-9-5
GENERAL METHODS- - -14-1818-241-28
                                                      SAMPLE NOS. 68L1152-68L1161
                                                                                                FEBRUARY 1977
                    DEPTH HORIZON
                                                            MEDS FNES VENS COST
                                         CLAY VCOS
                                                                                                               CLAY
                                                            .5- .25-
.25 .10
- PCT LT 2MM
                                                                               .05
                                                                                                                       CLAY
                                                                                                                              BAR
                                                       1-
                                   LT
                       2-
                            -05-
                       .05
                            .002
                                   .002
                                         .0002 1
                                                       .5
                                                                          .05
                                                                                . C2
                                                                                       -002
                                                                                             .CC2
                                                                                                   2-.1
                                                                                                          +02
                                                                                                                              TC
                                                      - - -
                                                                                                                 PCT
                                                                                                                             CLAY
  CP
                     1- - -
                            - - -
                                   - - -
                                                                                                    66.0
                                                                                                                              1.49
                                    5.1
                                                 1.0
                                                       4.0
2.9
                                                                   40.5
                                                                           8.7
                                                                                10.0
                                                                                                          32.4
000-5
           41
                      76.2
                            18.7
                                                             22.6
                                                                                        H - 7
                                                                                                          36.0
           821+1R
822+1R
                                                 2.5
                                                             18.8
                                                                   45.8
                                                                          11.1
                                                                                 8.2
                                                                                        6.0
                                                                                                    70.C
005-16
                      81.1
85.9
                            14.2
                                    4.7
018-30
                                    3.0
                                                       3.4
                                                             25.9
                                                                   46.4
                                                                           a.c
                                                                                                    77-9
                                                                                                                               .87
                                                                                                          41.2
                                                             19.2
                                                                   47.3
                                                                                 9.5
                                                                                                    70.5
                                                                                                                               .74
030-48
           P23518
                      83.7
                            13.6
                                    2.7
                                                       2.6
                                                                          13.2
                                                                                        4.1
                                                 1.3
                                                       4.0
                                                             20.1
                                                                                        4.0
                            13.0
                      84.1
C48-69
           P 3 1
C69-104
           Ē32
                      90.9
                                                  . 0
                                                       3.5
                                                             24.C
                                                                   53.5
                                                                           8.5
                                                                                 5.4
                                                                                        1.8
                                                                                                    82.0
                                                                                                          32.1
                                                                                                                               .68
                                                                                                    98.9
                                                                                                           3.C
                                                             46.7
                                                                   12.0
                                                                            .5
                                                                                         TR
                                                 3.6
                                                      36.6
                                                                                  . 6
104-203
                      99.4
                              - 6
                                     1 R
                                                                                 9.2
                                                                                        8.3
           A2 (A)
                      77.8
                            17.5
                                    4.7
                                                 2.0
                                                       4.8
                                                             22.7
                                                                                                    70.6
                                                                                                                               . 79
C05-8
                                                                                 9.4
CCC-15
              181
                      77.9
                            17.6
                                                       4.3
                                                             22.1
                                                                   43.9
                                                                           6-4
                                                                                                    71.5
                                                                                                           30.0
                                                                                                                               .87
                                                                                                                               .73
015-30
              (B)
                                    4.8
                                                             20.6
DEPTH (PARTICLE SIZE ANALYSIS, MM, 3B, 3B1, 3B2)( BULK DENSITY VOL. (----- MEIGHT -----) 4A1D 4A1H 4D
                                                                                         CONTENT- - - -) CARBONATE
                                                                                                                     (- -PH - -)
                                                                      ) (<del>-</del> -
                                                                                -WATER
                                        8C1A
                                                                                481C
1/3-
                                                                                             4C1
WRD
                                                                                                          6E1B 3A1A
                                                                                                                              8C1F
                                                                   4D1
                                                                          481C
                                                                                       482
         VOL. (- -
                                                             OVEN COLE
                     75-20 20-5 5-2
                                                                          1/10
                                                                                       15-
                                                                                                           LŤ
                                                                                                                  LT
                                                                                                                       1/1
                                                                                                                              1/2
         GT
               GT
                                         .C74
                                                                                       BAR
                                                                                                                 -002
                                                                                                                              CACL
               PCT (- - - PCT LT 75 -
                                         - - ) LT20
                                                      G/CC
                                                            G/CC
                                                                          PCT
                                                                                PCT
                                                                                       PCT
                                                                                             ĊМ
                                                                                                           PCT
                                                                                                                  PC T
                                                                         29.50
                                                                                        7.6
                                                                                                    36.3
                                                                                                                        4.5
                                                                                                                               4.2
C00-5
                                          23
17
                                                                                                                         5.1
                                                                                                                               4.3
CC5-18
                        ò
                                                                         12.70
                                                                                        3.4
                                                                                                    17.3
                                                                          8.70
                                                                                        2.6
C18-20
                        O
                                                                          8.50
                                                                                        2.0
                                                                                                    10.3
                                                                                                                         5.5
                                                                                                                               4.5
C3C+46
                                                                          8.00
                                                                                                                         5.6
C48-69
                                          20
                                                                                        1.7
                        ò
                                          12
                                                                          6.00
                                                                                                     8.9
069-104
                        0
                                                                          1.90
                                                                                                     2.0
                                                                                                                        6.0
                                                                                                                               4.8
                                                                         18.90
                                          24
25
005-8
                        0
000-15
                                                                         17.60
                                                                                                                         6.5
                                                                                                                               5.7
                                                                         13.60
                                                                                                                               5.6
                                                                                       (CAT EXCH) RATIO RATIO
                                 PHOS (- -EXTRACTABLE BASES 584A- -) ACTY
6SLA 6NZE 6020 6PZA 6QZA 6HIA
                                                                                                                       (BASE SAT)
CEPTH CONGANIC MATTER
                         ) IRON
                                                                                 AL
                                                                          6HIA
                                                                               6G10
                                                                                       5A3A
                                                                                             5464
                                                                                                   An I
                                                                                                          803
                                                                                                                  SE
                                                                                                                       503
                                                                                                                              5C1
        SALA
               631A
                       C/N
                            6C2A
                                                                   SUM
                                                                                            NHAC
                                                                                                    NHAC
                                                                                                                 SAT
                                                                                                                       EXTB
                                                                                                                              NHAC
                                                       NA
                                                                                KCL
EXT
                                                              ĸ
                                                                          BACL
                                                                                       EXTR
                                                                                                          CA
                            EXT
                                   TOTAL
                                          CA
                                                MG
                                                                                                                       ACTY
                                                                   EXTB
                                                                                                           τO
                                                                                                                 NHAC
         CARR
                            F.F
                                                                                      --- - CLAY
                                  UG/G (- - - - - - - - - - - - MEQ / 100
                                                                                                                              PCT
               PCT
                                                                          G- -
                                                                                                          MG
                                                                                                                 PCT
                                                                                                                       PCT
  CM
         PCT
                            PCT
                        19
                                   3600
000+5
                . 358
          6.66
                                   5000
005-18
                -038
           .66
018-30
           .34
                .021
                        16
                               . 7
                                   1550
030-46
           -27
                .016
                              -6
                                   200C
048-69
                               .6
                                   270C
069-104
                               . 3
                                   290E
                                   3000
104-203
           . C E
                              .7
                -1C4
CC5-8
COC-15
                .083
          1.29
                        16
                                   3000
C15-30
                            NΑ
                                              GYP
                                                    (-----) ATTERBERG BALA 6NIB 601B 6PLA 6CLA 6LLA 6KLA 6LLA 6MLA 4FL 4F2
      (SATURATED PASTE)
                                   ŅΑ
                                        SALT
         8E1 8C18
                      AΑ
                           502
                                   56
                                        805
                                               6F1A
                                                                                                                       LOTO PLST
         REST
                    HZC
                           ESP
                                                      EC.
                                                            CA
                                                                          NA
                                                                                     CC3
                                                                                            HCC3
                                                                                                   CL S04 N03
               ₽Н
                                        TOTL
                                                                   MG
                                                    MMHGS/
                                        SOLU
                                                                                                                       LMIT INDX
                                                      CM ( - - - - - - - MEQ / LITER - - - - - - - - )
                     PC 1
                           PCI
  CM
          CM
000-5
005+18
C18-30
C3C-48
C48-69
C69-104 12CCC 5.6 23.9
                                          90
                                                      .57
104-203
005-8
000-15
C15-30
IDENTIFICATION OF SPOCIC HORIZON BY LABORATORY CRITERIA (E).
                   (PYROPHOSPHATE, PHIO) (CIT - DIT) (PYROPHOSP)
                                                                      PYRO
          HORIZON
                                                                             CEC
                                    6A1B
                                                                     FE+AL
                                                                             -1/2
                     6C5A
                            6G5A
                                                 667A
                                                       FE+AL
                                                               AL+C
                                          6C2A
                                                                     C - C
                            EXT
                                    EXT
                                          EXT
                                                 EXT
                                                                             CLAY
                                                       CLAY
                                                               CLAY
                            Δi
                                          FE
                                                 AL
                            PCT
                                    109
                                                                      FE+AL
                                                                             THIC
                     PĽT
                                          .7
           P21HIR
                            - 2
                                                        . 1
                                                                - 1
005-18
                     -4
                                    . 3
     THIN DISCENTINOUS AZ HORIZON.
```

UG/G - PERCHLORIC ACID DIGESTION, AMMONIUM MOLYBDATE AND STANNOUS CHLORICE ACID COLORIMETRY. ANALYSIS BY M. SINGER

SAMPLES CHTAINED FROM CULTIVATED FIELD ABOUT 200 METERS FROM SITE.

USYS - PERHEURIC ALL CITESTION, PARTITUDE AND STANDARD TO THE INSTITUTE OF AGRICULTURE, UNIVERSITY OF MINNESOTA, ST. PAUL, MINNESOTA, SOIL SURVEY INVESTIGATIONS UNIT, BELTSVILLE, MARYLAND.

(B)

(C)

(0)

(E)

SIEVED SAMPLE (481A).

Pedon classification: Typic Udipsemment; mixed, frigid. Series classification: Same.

Soil: Omega.

Soil No.: S68MN-9-5.

Location: Carlton County, Minnesota; SEL/4, SWL/4, NWL/4, Sec. 18, T. 47 N., R. 17 W.; 660 feet east of bridge and 120 feet north of east-west road; about 92 deg. 32 min. west longitude and h6 deg. 33 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal -40, winter normal - 12, summer normal - 65; some characteristics of precipitation in inches are mean annual - 28, May to September - 19, mean snowfall - 55.

Parent material: Noncalcareous reddish brown sandy outwash of Nickerson phase of the Superior Lobe of the Late Wisconsin glaciation.

Physiography: Central Lowlands; Barnum Clay-till Area (H. E. Wright, 1972); valley train of the Blackhoof River.

Landscape setting: Site has 1/2 percent convex slope. The general area is nearly level with relative relief of 10 feet. Elevation is 1,090 feet.

Vegetation: Comiferous forest, mostly red pine with some white and jack pine; understory of bracken fern, clintonia, canadian mayflower, and few hazel; site index for red pine - 67, white pine - 66, jack pine - 73.

Drainage: Somewhat excessively drained. Erosion: None.

Ground water: Deeper than 2 m.

Permeability: Rapid.

Moisture: Moist throughout.

Described by: R. Lewis and H. Finney on October 9, 1968.

Sampled by: L. Shields, G. Holmgren, and R. Rust on October 9, 1968.

- 1_to 0_cm (1/2 to 0 inches) Pine needles, branches and twigs in varying state of decomposition.
- 6811152 0 to 5 cm (0 to 2 inches) Black (10YR 2/1) losmy sand; moderate fine granular structure; very friable; few charcoal fragments; abundant very fine and medium random roots; about 0.5 percent coarse fragments renging from 3 to 6 mm; abrupt wavy boundary. (3 to 5 cm thick)
- 2 68L1159 5 to 8 cm (2 to 3 inches) Discontinuous horizon occupying about 75 percent of the pedon pit and ranging from 0 to 4 cm thick; reddish gray (5YR 5/2) loamy sand; weak fine subangular blocky structure; abundant very fine and medium random roots; very friable; abrupt wavy boundary.
- B21hir 6811153 5 to 18 cm (2 to 7 inches) Reddish brown (5YR 4/4) loamy sand; weak fine subangular blocky structure; very friable; abundant fine through coarse random roots; about 0.5 percent coarse fragments ranging from 3 to 6 mm; gradual smooth boundary. (8 to 13 cm thick)
- B22hir 6811154 18 to 30 cm (7 to 12 inches) Reddish brown (5YR 4/4) send; weak fine subangular blocky structure with a few weak medium subangular blocky peds; loose; abundant medium and coarse vertical roots; about 0.5 percent coarse fragments ranging from 3 to 6 mm; gradual smooth boundary. (10 to 13 cm thick)
- B23hir 6811155 30 to 48 cm (12 to 19 inches) Reddish brown (5YR 4/4) grading to (5YR 5/3) sand; weak fine and medium subangular blocky structure; loose; abundant medium and coarse vertical roots; about 0.5 percent coarse fragments ranging from 3 to 6 mm; gradual smooth boundary.
- 681 6811156 48 to 69 cm (19 to 27 inches) Reddish brown (5YR 5/3) sand; weak fine and medium subangular blocky structure with a few 10 to 20 cm weakly coherent chunks; loose; abundant medium and coarse vertical roots: shout I to 2 nercent coarse fromments nowing for

SERIES - - - - - - - - CMEGA

SCIL NO - - - - - 568MN-9-8

ú. . . <del>.</del>

EDUNTY - - - CARLTON

SAND   SILT CLAY CLAY VCCS   CANS   MEDS   FNES VFNS   COSI   FNSI   VFNS   TEXT   II   CLAY   COS   COS	JENERAL	PETHE	:5	-1A,18	18,2A1	<b>, 2</b> 8			SAMPL	E NOS.	68L11	62-68L	1169		FI	BRUARY	1977			
0C-5 A] 88.4 8.1 3.5 .6 11.2 31.3 42.0 3.4 3.C 5.1 85.0 21.3 2.54 05-10 BL 91.5 5.9 2.6 .5 8.4 28.6 48.9 5.1 2.1 3.8 86.4 26.6 .89 1C-2C R21HIR 91.4 5.5 3.1 .9 13.5 34.5 39.6 2.5 1.4 4.1 88.5 18.1 .52 2C-23 E2ZHIR 90.3 6.5 3.2 .8 11.3 30.0 44.4 3.6 2.2 4.2 86.5 23.1 .93 32-64 821 94.4 3.6 2.C 1.1 10.6 32.3 46.5 3.7 1.5 2.1 90.5 23.2 .56 46-112 E32 96.9 2.5 6 .4 7.2 28.3 52.0 8.4 2.0 .5 88.5 32.9 12-152 C1 97.C 2.8 .2 .3 4.8 27.1 58.0 6.2 2.2 .6 90.3 32.8 52-173 C2 94.6 5.0 .4 .6 5.9 24.0 51.6 12.5 4.7 .3 82.1 40.0    EPTH (PARTICLE SIZE ANALYSIS, PM, 38, 381, 382)( BULK DENSITY )( WATER CONTENT) CARBONATE (PH) VCL. ( WEIGHT) 4A1D 4A1H 401 491C 481C 482 4C1 6618 3A1A 8C1A 8C1A 8C1A 6C1 GT GT 75-2C 20-5 5-2 LT 2C-2 1/3 CVEN COLE 1/1C 1/3 -15 - WCC LT LT 1/1 1/2 2 75		HCRI	CON	SAND 2- -05	SILT .05-	CLAY LT .CO2	FINE CLAY LT .CCC2	vcos ?-	CORS 1- .5	SAND - MEDS .5-	FNES -25-	VFNS -10-	COSI .05	SILT- FNSI .02 .002	VFSI .005-	FAML TEXT SAND 21	INTR II •2- •02	FINE CLAY TO CLAY	NON- CD3- CLAY	801 15- BAR TO
EPTH (PARTICLE SIZE ANALYSIS, PM, 3B, 3B1, 3B2)   BULK DENSITY   1   CARBUNATE   PH   VGL. (   WIGHT   4A10   A41H   4D1   4B1C   4B1C   4B2   4C1   6E18   3A1A   8C1A   8C1E   GT   GT   75-20   20-5   5-2   LT   2C-2   1/3-   0VEN COLE   1/1C   1/3-   15-   WRC   LT   LT   1/1   1/2   2   75	00-5 05-10 10-20 20-33 33-64 64-112 112-152	A1 B1 E21 E22 631 E32 C1	- I R - J R	88.4 91.5 91.4 90.3 94.4 96.9 97.0	8-1 5-9 5-5 6-5 3-6 2-5 2-8	3.5 2.6 3.1 3.2		.5 .9 .8	8.4 13.5 11.3	28.6 34.5 30.0	48.9 39.6 44.4	5.1 2.5 3.6	2.1 1.4 2.3	3.8 4.1 4.2 2.1 .5		86.4 88.5 86.5 90.5 88.5 90.3	26.6 18.1 23.1 23.2 32.9 32.8			.85 .52
C5-10 C C O C O 1C O T, 6A 2.2 8.8 4.9 3.9 1C-20 TR C O C TR 9 TR 7.8A 1.6 9.8 5.3 3.6 2C-33 O C O O O 11 O 6.8A 2.2 8.8 5.5 4.5 3.3-64 TR C O C TR 7 TR 4.1A 1.0 6.4 5.4 4.6 64-112 C C O C O C O C O C O C O C O C O C O	CP CP	VGL. (	 GT 75	75-20	- WEI 20-5	GHT - 5-2 .T 75 -	LT .C74	20-2 PGT LT20	4A1D 1/3~ BAR G/CC	K DENS 4AlH OVEN DRY G/CC	ITY ) 401 COLE	481C 1/1C BAR PCT	-WATE 4810 1/3- BAR PCT	R CCM 482 15- 84R PCT	TENT- 4C1 WRD GM/ GM	)	6E18 LT 2 PCT	3A1A LT -002 PCT	8C1A 1/1 H2E	8C1E
1C-20 TR C C C TR 9 TR 7.8A 1.6 9.8 5.3 3.6 2C-33 O C O O O 11 O 6.8A 2.2 8.8 5.5 4.5 33-64 TR C O C IR 7 TR 4.1A 1.0 6.4 5.4 4.6 64-112 C C O C O 6 O 3.3A .5 6.6 5.6 4.7 12-152 C O O C O 5 O 2.5A .3 4.0 5.7 4.6 52-173 TR C C TR TR 11 TR 3.4A .4 8.5 5.9 4.6	2, <u>2</u>	<u> </u>	r	n.	. ۲							30.E4		00		, 21 K				4 1
EPTH (DRGANIC MATTER ) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE SAT)																				
	2C-33 33-64 64-112 112-152	TR O TR C C	0000	0 0 0	0 0 0 0	TR 0 1R 0 0	9 11 7 6 5	TR O TR O				7.84 6.84 4.18 3.38 2.54		1.6 2.2 1.0 .5		9.8 8.8 6.4 6.6 4.0			5.3 5.5 5.4 5.6 5.7	3.6 4.5 4.6 4.7

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SCIL SURVEY LABCRATORY LINCOLN, NEBRASKA

CCC-5 8.5C .3 15CH C05-10 .91 .3 90E C1C-20 .34 .4 290E C2C-33 .2C .4 210E C33-64 .12 .3 3COB C64-112 .C5 .2 2158 112-152 .C4 .2 165B 152-173 .C7 .1 245B  IDENTIFICATION OF THE SPCCIC HOWIZON BY LABORATORY CRITERIA (C). DEPTH HORIZON (PYROPHOSPHATE,PHIO) (CII - DIT) (PYROPHOSP) PYRC CEC 6C5A 6C5A 6C1B 6C2A 6C1B FEAL AL+C FEAL -1/2 EXT EXT EXT EXT EXT EXT / / / CLAY FE AL C FE AL CLAY CLAY C - C X PCT PCT PCT PCT PCT FEAL THIC	CP	CARE	PCT	FE PCT	υG/G (-	 			EA EXT	ACTY	, 	TO CLAY	TO MG	NHAC PCT	ACTY PCT	PC
COS+10	CCC-5	8.5C	-+	.3	1508	 	 									
20-33 .2C .4 2108 33-64 .12 .3 3008 64-112 .C5 .2 2158 612-152 .C4 .2 1658 6152-173 .C7 .1 2458		.91		. 3	908											
33-64 .12 .3 3008  104-112 .C5 .2 2158  112-152 .C4 .2 165B  152-173 .C7 .1 245B  IDENTIFICATION OF THE SPOOL HORIZON BY LABORATORY CRITERIA (C).  DEPTH HORIZON (PYROPHOSPHATE, PH10) (CII - DIY) (PYROPHOSP) PYRO CEC  6.54 6.55 6.55 6.18 6.22 6.37 FE+AL AL+C FE+AL -1/2  EXT EXT EXT EXT EXT / / / CLAY  FE AL C FF AL CLAY CLAY C - D X	10-20	. 34		.4	2908											
64-112 .C5 .2 2158 12-152 .C4 .2 165B 52-173 .C7 .1 245B  DENTIFICATION OF THE SPCCIC HOWIZON BY LABORATORY CRITERIA (C).  DEPTH HORIZON (PYROPHOSPHATE, PHIO) (CII - DIT) (PYROPHOSP) PYRO CEC 6C54 6G54 6A1B 6C24 6G74 FE+AL AL+C FE+AL -1/2 EXT EXT EXT EXT EXT / / / CLAY FC AL C FE AL CLAY CLAY C - D X	20-33	•3C		-4	2108											
12-152 .C4 .2 1658 52-173 .C7 .1 2458  DENTIFICATION OF THE SPOOL HORIZON BY LABORATORY CRITERIA (C). DEPTH HORIZON (PYROPHOSPHATE, PHIO) (CII - DIT) (PYROPHOSP) PYRO CEC 6C54 6G54 6A18 6C24 6G74 FEFAL AL+C FEFAL -1/2 EXT EXT EXT EXT EXT / / / CLAY FE AL C FE AL CLAY CLAY C - D X	33-64	-12		. 3	3008											
DENTIFICATION OF THE SPOOL HORIZON BY LABORATORY CRITERIA (C).  DEPTH HORIZON (PYROPHOSPHATE, PHIO) (CII - DIT) (PYROPHOSP) PYRO CEC  6054 6054 6418 6024 6674 FE+AL AL+C FE+AL -1/2 EXT EXT EXT EXT EXT / / / CLAY FE AL C FE AL CLAY CLAY C - D X	64-112	.05		. 2	2158											
DENTIFICATION OF THE SPECIC HORIZON BY LABORATORY CRITERIA (C).  DEPTH HORIZON (PYROPHOSPHATE, PHIO) (CII - DIT) (PYROPHOSP) PYRO CEC 6.054 6654 6418 6624 6674 FE+AL AL+C FE+AL -1/2 EXT EXT EXT EXT EXT / / CLAY FE AL C FE AL CLAY CLAY C - D X	12-152	.C4		. 2												
DEPTH HCRIZCN (PYRCPHOSPHATE.PHIO) (CII - DIT) (PYROPHOSP) PYRC CEC 6C54 6G54 6A18 6C24 6G74 FEFAL AL+C FEFAL -1/2 EXT EXT EXT EXT / / / CLAY FC AL C FE AL CLAY CLAY C - D X	152-173	.07		. l	245B											
							HOSPI	PYRC	CEC							

⁽A) SIEVEC SAMPLE (481A).

(B) UG/G - PERCHLORIC ACID DIGESTION, AMMONIUM MOLYBDATE AND STANNOUS CHLORIDE ACID COLORIMETRY. ANALYSIS BY M. SINGER INSTITUTE OF AGRICULTURE, UNIVERSITY OF MINNESOTA, ST. PAUL, MINNESOTA.

(C) SCIL SURVEY INVESTIGATIONS UNIT, BELTSVILLE, MARYLAND.

Pedon classification: Typic Udipsamment; mixed, frigid.

Series classification: Same.

Soil: Omega.

Soil No.: S68MN-9-8.

Location: Carlton County, Minnesota; NW1/4, NW1/4, SE1/4, Sec. 28, T. 46 N., R. 17 W. About 250 feet east of north-south road along trail and 60 feet south. About 92 deg. 30 min. west longitude and 56 deg. 26 min. north latitude.

Climate: Humid continental. Some characteristics of temperature in deg. F. are: annual normal - 40, winter normal - 12, summer normal - 65; some characteristics of precipitation in inches are: mean annual - 28, May to September - 19, mean snowfall - 55.

Parent material: Noncalcareous reddish brown sandy outwash of Nickerson phase of the Superior Lobe of the Late Wisconsin glaciation.

Physiography: Central Lowlands; Outwash plain near border between the Barnum Clay-till Area and

Glacial Lake Duluth Area (H. E. Wright, 1972).

Landscape setting: Pedon has a 1 percent convex north facing slope. The immediate area is undulating with relative relief of about 10 feet. Soils of the Omega series are dominant in the immediate vicinity.

Vegetation: Coniferous forest; chiefly jack pine about 4 to 8 inches DBH; understory of blueberry. bearberry, and sweet fern.

Drainage: Somewhat excessively drained.

Erosion: None.

Ground water: Deeper than 2 m. Permeability: Moderately rapid.

Moisture: Moist throughout.

Described by: R. Lewis and H. Finney on October 10, 1968. Sampled by: L. Shields and G. Holmgren on October 10. 1968.

- 1 to 0 cm (1/2 to 0 inches) Pine needles branches and twigs in varying states of decomposition.
- 6811162 0 to 5 cm (0 to 2 inches) Black (10YR 2/1) loamy sand; weak fine granular structure; very friable; few charcoal fragments; about 5 percent clean sand particles; abundant mostly medium and coarse random roots; abrupt wavy boundary. (1 to 5 cm thick)
- 6811163 5 to 10 cm (2 to 4 inches) Reddish brown (5YR 1/4) light loamy sand; weak fine and very fine subangular blocky structure; very friable; about 10 percent discontinuous dark reddish gray (5YR 4/2) in upper part ranging to 2 cm in thickness; abundant medium and coarse random roots; abrupt wavy boundary. (1 to 5 cm thick)
- B2lhir 68L1164 10 to 20 cm (4 to 8 inches) Dark reddish brown (5YR 3/4) grading to reddish brown (5YR 4/4) light loamy sand; massive breaking to weak fine subangular blocky fragments; very friable; loose; plentiful medium and coarse random roots; gradual smooth boundary. (8 to 15 cm thick)
- B22hir 6811165 20 to 33 cm (8 to 13 inches) Reddish brown (5YR 4/4) sand; single grain and some weak fine and medium subangular blocky structure; loose; plentiful medium and coarse vertical roots; gradual wavy boundary. (10 to 15 cm thick)
- 68L1166 33 to 64 cm (13 to 25 inches) Reddish brown (5YR 5/4) sand; single grain and a few weakly coherent masses; loose; few medium vertical roots; diffuse wavy boundary.
- 6811167 64 to 112 cm (25 to 44 inches) Reddish brown (5YR 5/4) grading to (5YR 5/3) sand; single grain and a few weakly coherent masses; loose; very few medium vertical roots; diffuse smooth boundary.
- 68L1168 112 to 152 cm (44 to 60 inches) Reddish brown (5YR 5/3) sand; single grain and a few weakly coherent masses; loose; very few medium vertical roots; clear smooth boundary.
- 6811169 152 to 173 cm (60 to 68 inches) Light reddish brown (5YR 6/3) grading to reddish brown (5YR 5/3) sand; single grain; very friable; loose; few thin horizontal strata of mostly fine and very fine sand; very few roots.
- Remarks: Colors are for moist soil unless otherwise indicated. Samples were obtained from a pit with dimensions of about 1 by 1 by 2 m in depth. Due to darkness, color was determined under artificial light. The Cl horizon was sampled between depths of 132 to 147 cm.

SDIL NO - - - + - - 570MN-20-1

COUNTY - - - DODGE

GENERAL METHODS- - -1A. 1818,241,28

SAMPLE NOS. 7011059-7011067

GENERAL		1A, 1E																
OEPTH CM	HORIZON	SAND 2-	SILT .05-	CLAY LT	FINE CLAY LT	vcus 2-	CORS 1-	LE SIZE SAND - MEDS •5- •25	FNES	YSIS, L ) VFNS -10-	COS1 .05	3A1, SILT- FNSI .02 .002	3ALA. 	3AlB - FAML TEXT SAND 2~.1	INTR II .2-	FINE CLAY TO CLAY	) NON-	RATI 8D1 15- 8AR TO CLAY
000-15 015-23 023-38 038-61 061-97 097-119 119-146 146-181 181-300	2C2 3C3	18.9 26.8 49.7 50.5 48.8 43.5 47.6	53.1 47.2 27.5 29.2 34.8 37.2	26.3 28.0 26.0 22.8 20.3 16.4 19.3 18.0 17.1		.8 .7 1.6 4.9 3.6 4.2 3.1 3.6 4.8	4.5 3.0 4.1 7.9 8.4 8.3 6.7 7.5	4.9 9.2 9.7 8.9 8.1 8.8 9.2	18.1 16.8 15.4 16.6 16.6	4.8 6.6 10.4 10.7 10.6 10.2 11.1	21.6 12.7 13.2 15.3 15.6 15.6	30.2 25.6 14.8 16.0 19.5 21.6 18.8 18.3	5.7 5.6	39.8 38.2 33.3 36.5 38.4	31.2 33.3 32.3 33.4 34.9 34.0 35.6	61 67 63 34 26 37	26 28 26 23 20 13 16 15	. 4 . 4 . 3 . 4 . 4 . 4
	VOL. (- GT GT 2 75		WE 20-5	IGHT - 5-2 LT 75 -	LT .074	20-2 PCT LT20	)( BUI ) 4A1D 1/3- BAR G/CC	LK DENS 4A1H OVEN DRY G/CC	401 COLE	)( 481C	WATE 481C 1/3- BAR PCT	R COM 482 15+ BAR PCT	HENT- 4C1 WRD CM/ CM/	- ~ -1	CARBO 6E 19 LT 2 PCT	UNATE 3A1A LT -002	(PH 8C1A 1/1 H2O	8C 1 1/2 CAC
000-15 015-23 023-38 023-38 038-61 061-97 097-119 119-146 146-200 200-300	TR TR 2 2 2 2 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TR TR TR 1 2 1 1	TR TR	78 84 77	TR TR TR 3 4 4	1.39 1.37 1.41 1.49 1.51 1.76 1.80A	1.55 1.47 1.52 1.65 1.66	.038 .024 .026 .034 .031	27.0 27.3 23.0 17.9 16.7 14.3		12.0 11.5	.19 .19 .16 .12 .10 .11	2.68 3.58 2.18	3 3 3 5 TR 19	3 3 3	5.9 5.9 5.4 5.5 7.9 8.2 8.2	5. 5. 5. 6. 7. 7.
DEPTH (C	ORGANIC M GAIA 66 ORGN NI CARB POT PO	1 T G ; T	IRON 6C28 EXT FE PCT	PHCS TCTL PCT	(+ -E) 6N2E CA	CTRACTA 602D MG	ABLE BA 6P2B NA	ASES 58 6028 K	SUM EXTE 1 / 10	ACTY 6H1A BACL TEA 0 G	AL 6G1E KCL EXT	CAT 5A3A EXTB ACTY	EXCH) 5A6A NHAC	RATIO 8D1 NHAC TO CLAY	RATIO 9D3 CA 10 MG	5FI SAT NHAC PCT	(BASE 5C3 EXTB ACTY PCT	SC I NH/ PC1
000-15 015-23	2.54C 1.38 0.63 0.24 0.11 0.06 0.04 0.03	135 10 055 11	1.0 1.0 1.1 1.1 1.1 0.9 1.2 0.8 0.6		15.2 14.2 12.6 10.6 13.6 14.8D 15.9D 15.1D 14.3D	4.7 4.4 3.8 3.1 3.2 1.7D 2.1D 2.0D 1.8D	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.6 0.3 0.4 0.4 0.3 0.2 0.3 0.3	20.6 19.1 17.0 14.3 17.3 16.9 18.5 17.6	15.1 8.4 7.1 4.4 2.0	0.3	35.7 27.5 24.1 18.7 19.3	22.3 20.9 18.9 14.7 12.7 8.2 9.7 8.8 8.0	0.85 0.75 0.73 0.64 0.63 0.63E 0.61E 0.59E	3.2 3.2 3.3 3.4 4.3	68 68 67 72	57 69 71 76	4
			NA	NA 5E SAR		GYP 6F1A	8A1A EC MMHOS/	6N1B CA	601B MG	SATURA 6P18 NA	ATION E 601B K	XTRACT 611A CO3	4118 6118 603H	6K1A CL	6L1A 504	) 6M1 A NO3	ATTER8 4F1 LQID LMIT	4F2 PLS
000-15 015-23 023-36 038-61 061-97 097-119 119-140 146-200 200-300	3000	7,6 29.8	2		110		0.60	4.0	1.2	0.5	0.1						40F 33F 26F	15 18
ST PAUL PHORUS, PHORUS,	MN. MINITED FOR ANY STATE OF AN	NESOTA AGI INFRALOGY PERCHLORI NO 1 EXTRA MINE VERM ILL	, X-RA C DIGE ACTANT TALOGY ITE K	Y ANAL STIEN.	YSIS. AVAII ) UARTZ	TOTAL LABLE : TOTAL P	PHOS- PHOS- AVAIL P	(A) (B)	PUS PUS A D ARE SIV	IMATED: RO-PENE HED INT ISTANCE FORCE E STREM ANIC CO	ETRATIO TO BULK E OF O. (KG) A NGTH. ARBON !	ON RES C DENS .6 CM ( AND NO	ISTANC! ITY CLO USING I ESTI	E - A P DD, EQU A POCKI MATES ( Q TO A	ROD O. JILIBR ET PEN DF UNC DEPTH	6 CM DI ATED AT ETROMET ONFINE	TA IS S T 1/10- TER. U D COMPR	SLOWL BAR, INITS RES <del>-</del>
CM 000-15 015-23 023-38 038-61 061-97 097-119 119-146 146-200 200-300	40 30 40 30 40 40 40 25 30	PCT LT  0 4 20 3 20 3 20 3 20 2 20 3 20 2 20 4 15 4 15 4	.002 M 5 5 0 5 5 5 0 5 5	M	}	(LB	28 7 6 22 25 3 2	) (D) - (E) (F)	) MET ) MET	HOD 6N4 HOD 802	4C FOR 2.	CA AN	604C	FOR M	5.	LINCO		

Pedon classification: Typic Entrochrept; fine-loamy, mixed, mesic*.

Series classification: Mollic Hapludalfs; fine-loamy, mixed, mesic.

Soil: Racine taxadjunct* .

Soil No.: S704N-20-1.

Location: Dodge County, Minnesota; about 4 miles north of Hayfield, Minnesota; 380 feet south and 610 feet west of the northeast corner of SEI/4 of NWI/4, Sec. 35, T. 106 N., R. 17 W. About

92 deg. 50 min. west longitude, and about 43 deg. 57 min. north latitude. Climate: Humid continental. Some features of precipitation in inches: annual normal - 29, May through September - 19, annual normal snowfall - 40. Some features of temperature in deg. F.: annual normal - 45, summer normal - 70, winter normal - 18.

Parent material: Loamy mantle (loess?) over loamy calcareous Kansan(?) till with a thin inter-

vening stone line.

Physiography: Central Lowlands; Iowan Erosion Surface (Ruhe); Rochester Till Plain (Wright);

Kenyon-Taopi Plain, silty, undulating (MN Soil Atlas).
Landscape setting: Site has 4 percent southeast facing slope on a shoulder which is adjacent to a drainageway. Topography in the immediate vicinity is gently rolling. Relative relief in the immediate vicinity is about 20 feet. Elevation is about 1,305 feet. Major solls in the area are of the Kasson, Skyberg, and Racine series. Vegetation: Corn field. Native vegetation was tell grass prairie or savanna.

Drainage: Well drained.

Erosion: Slight
Moisture: Moist to wet; area recently had prolonged heavy rains; downslope seepage filled pit to within 15 inches of the surface.

Root distribution: Common to 24 inches, few to 48 inches.

Permeability: Moderate in upper part of solum grading to slow or moderately slow in the IIC horizon. Described by: J. F. Commins on October 19, 1970.

Sampled by: R. B. Grossman, E. R. Gross, and J. F. Cummins on October 19, 1970.

- 7011059 0 to 15 cm (0 to 6 inches) Very dark gray (10YR 3/1) loam high in content of silt, very dark gray1sh brown (10YR 3/2) rubbed, dark gray (10YR 4/1) to gray (10YR 5/1) dry; weak fine subangular blocky structure; friable; less than 1 percent coarse fragments; abrupt smooth boundary.
- A2 70II.060 15 to 23 cm (6 to 9 inches) Dark brown (10YR 3/3) loam high in content of silt, dark yellowish brown (10YR 3/4) rubbed, about 10 percent very dark gray (10YR 3/1) wormcasts; grayish brown (10YR 5/2) and brown (10YR 5/3) dry; weak thin platy structure; friable; less than 1 percent coarse fragments; abrupt smooth boundary.
- 21t 70L1061 23 to 38 cm (9 to 15 inches) Dark yellowish brown (10TR 5/4) (10TR 5/3, dry) loam high in content of silt, brown (10TR 4/3) (10TR 5/3 and 6/3, dry) coatings on faces of peds, about 5 percent dark grayish brown (10TR 3/1) wormcasts; weak fine subangular blocky structure; friable; few clean sand particles on faces of peds; a few thin clay films in pores; abrupt wavy boundary.
- HB22t 7011062 38 to 61 cm (15 to 24 inches) Yellowish brown (10YR 5/4) loam, dark yellowish brown (10YR 4/4) (10TR 6/4, dry) coatings on faces of peds; weak and moderate, fine and medium prismatic structure parting to weak and moderate, fine and medium subangular blocky structure; friable; few clean sand particles on faces of peds; few thin clay films in pores; about 4 percent coarse fragments with more larger fragments, coarse gravel and cobbles, in upper part; clear wavy boundary.
- IB23t 70L1063 61 to 97 cm (24 to 37 inches) Yellowish brown (10YR 5/6 and 5/8 loam with yellowish brown (10YR 5/4) coatings on faces of peds; moderate fine and medium prigmatic structure; friable; few clean sand particles on faces of peds; few thin clay films on faces of peds and in pores; about a percent coarse fragments; clear wavy boundary.
- ICL 70I.1064 97 to 119 cm (38 to 47 inches) Yellowish brown (10YR 5/6 and 5/8) loam; moderate medium and coarse prismatic structure; firm; few lime concretions and soft filaments on ped faces; about 6 percent coarse fragments: clear wavy boundary.
- IC2 70L1065 119 to 146 cm (47 to 58 inches) Yellowish brown (10YR 5/6 and 5/8) sandy clay loam; common medium distinct grayish brown (10YR 5/2) mottles; moderate medium and coarse prismatic structure; firm; few soft lime filaments; about 6 percent coarse fragments; clear wavy boundary.
- 7011066 146 to 181 cm (58 to 72 inches) Light olive brown (2.5Y 5/4) loam; many medium prominent yellowish brown (10TR 5/8) and grayish brown (10TR 5/2) mottles; moderate medium and coarse prismatic structure; firm; few lime filaments on faces of peds; about 6 percent coarse fragments.
- 7011067 181 to 300 cm (72 to 112 inches) Not described. ΠICL
- Remarks: A pedon each of the Kasson (\$70MN-20-2) and the Skyberg (\$70MN-20-3) was sampled in the immediate vicinity. Samples were collected from a pit that was dug with a backhoe.
- *Because of the rather slight evidence of illuviation of clay in this pedom, a more realistic classification is in Typic Eutrochrepts. Perhaps the series also should be placed in Eutrochrepts.

EUIC SERIES - - - - - - RIFLE

COUNTY - - - ST. LOUIS

SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOIN, NEBRASKA

GENERAL METHODS - - - 14.1818.241.28

SOIL NO - - - - - S73MN-69-1

SAMPLE NOS. 73L607-73L615

MARCH 1977

GENERAL MELUODS			. 5 4 2 3 .	, 20		5411 E5 405. (5200) (52015					PATRICAL EST /							
DEPTH	HORIZON	SAND 2- .05	SILT .05-	CLAY LT .002	PINE CLAY LT .0002	( ▼COS 2- 1	CORS 1-	.5-	FNES .25-	) VFNS .10-	COSI .05	FNS1 .02 .002	) VFSI .005-	PAML TEXT SAND 21	INTR II .2- .02	PINE CLAY TO CLAY	CLAY CO3-	8D1 15+
0-25 25-60 60-70 70-130 130-165 165-180	OAP OE1 (A) OE2 OE3 (B) OA2 OA3																	*****

SHEAR DEPTH STRENGTH (C)

CH	PCT	PCT	PCT				G/CC	G/CC	PCT	PCT	PÇT	PÇT	CM	KPA	
0-25	19	53	3	10YR	4/3	5.1	. 20		60	340					
25-60	8	65	20	10YR	8/3	4.8	,13		66	580					
60-70	10	44	17	10YR	7/3	4.8				690				8.2	
70-130	10	72	21	10 Y R	7/3	5.0	. 12		60	720				12.7	
130-165	10	32	7	10 Y R	6/3	5.3	. 13		65	705				11.7	
165-180	23	10	3	10YR	4/2	5.3	. 15		64	520					

⁽A) RESULTS FOR 73L608, 73L609, 73L610 AVERAGED AND REPORTED FOR OE1 HORIZON.(B) RESULTS FOR 73L612 and 73L613 AVERAGED AND REPORTED FOR OF3 HORIZON.

⁽C) KPA = KILOPASCAL.

Pedon classification: Typic Borohemist; euic.

Series classification: Same .

Soil: Rifle series .

Soil No.: S73 MN-69-1.
Location: St. Louis County, Minnesota; about 1 mile north of Sax; 100 feet south and 50 feet west of the northeast corner of field No. 5, Wilderness Farm Experimental Area, in the NE 1/4, NW 1/4, Sec. 26, T. 55 N., R. 18 W.; about 47.2 deg. north latitude and about 92.6 deg. west longitude.

Climate: Humid continental. Mean annual temperature is 38 deg.F.; mean summer temperature is 63 deg.F.; and mean winter temperature is 10 deg.F. Mean annual precipitation is 28 inches; May through September precipitation is 18 inches; mean annual snowfall is 60 inches; frost-free period is 84 days.

Farent material: Organic soil material derived primarily from herbaceous plants over loamy glacial lacustrine sediments of Late Wisconsin age.

Physiography: Central lowlands; Upham Lacustrine Plain. Site is about 10 miles from the border of the plain and the morainic uplands. The lacustrine plain is level in this vicinity. Elevation is about 1,318 feet. Slope of bog is about 5 feet per mile to the southwest.

Vegetation: Cultivated field.

Distance to adjacent mineral land: About 3 miles.

Microrelief: None

Depth to water table: About 30 inches.

Subsidence: Slight; ditches at intervals of about 100 feet.

Observers: Pedon was first described by R. S. Farnham and H. R. Finney on Sept. 1, 1966. Samples were collected, shear strength was measured, and some additional notes on morphology were obtained on July 9, 1973 by E. L. Bruns, J. H. Day, L. Dunnigan, R. S. Farnham, H. R. Finney, M. Levesque, W. C. Lynn, and W. E. McKinzie. Samples were obtained from a hand-dug pit, with a spade, and with the Macaulay peat sampler.

Oap.731607 0 to 25 cm. Very dark brown (10 YR 2/2, broken face) matrix and very dark grayish brown (10YR 3/2, broken face) fiber, sapric material, very dark brown (10YR 2/2, rubbed); about 20 percent fiber, about 5 percent rubbed; weak very fine and fine granular structure; very friable; mostly herbaceous fiber with about 5 percent woody fiber; about 15 percent mineral materials

abrupt smooth boundary.

(731608, 731609, 731610) 25 to 60 cm. Dark brown (7.5YR 3/2, broken face) matrix and dark yellowish brown (10YR 3/4, broken face) fiber, hemic material, very dark grayish brown (10YR 3/2, rubbed); about 70 percent fiber, about 40 percent rubbed; very weak thin through thick platy structure; nonsticky; mostly

herbaceous fiber with a trace of woody fiber; about 8 percent mineral material; clear; smooth boundary.

Oe2 73161160 to 70 cm Very dark brown (10YR 2/2, broken face) matrix and dark yellowish brown (10YR 4/4, broken face) fiber, hemic material, black (10YR 2/1, rubbed); about 50 percent fiber, about 30 percent rubbed; massive; slightly sticky; about 75 percent herbaceous fiber and about 25 percent woody fiber; about 25 percent woody fragments as large as 10 cm across and 50 cm in length; about 15 percent mineral material; clear smooth boundary. (731612, 731613)

70 to 130 cm Dark yellowish brown (10YR 4/4, broken face) hemic material, very dark brown (10YR 2/2, rubbed); about 60 percent fiber, about 40 percent after rubbing; massive; nonsticky, herbaceous fiber; about 10 percent mineral material; gradual smooth boundary.

Oa2 731614130 to 165 cm Very dark brown 110YR 2/2, broken facel matrix and very dark gravish brown

	·			
` <u> </u>				
	* .			
·- · '	T -	1		
	<del></del>			
<del></del>			•	
<del></del>				

SUIL CLASSIFICATION-TYPIC CALCIAQUOLL
CORRSE-LOAMY, FRIGIO
SERIES - - - - - - - - - - ROCKWELL

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY

SERIES ROCKWELL	NATIONAL SUIL SURVEY LABORATORY Linculn. Nebraska
SOIL NC \$67MN-84-3 COUNTY WILKIN	
GENERAL METHCCS1A-1818-2A1-28 SAMPLE NOS. 67L602-67L609	FEBRUARY 1977
SAND SILT CLAY CLAY VCGS CORS MEDS FNES VFNS CO 205- LT LT 2- 1525100 .05002 .002 .0002 l .5 .25 .10 .05 .00	SILT) FAML INTR FINE NON- BD1 DSI FNSI VFSI TEXT II CLAY CO3- 15- US .OZ .CC5- SAND .2- TO CLAY BAR D2 .002 .007 2-1 .02 CLAY
CM (	PCT PGT CLAY
	1 F . 1
^ <b>}</b>	
	•
to a second	
<del>(10-12</del>	
<b>J</b> (	
C36-53 C1GCA 63.3 14.6 22.1 .4 1.6 2.4 15.5 43.4 6	6.5 6.1 19.9 61.5 11 .34
053-74 C2C 81.6 11.7 6.7 .7 3.0 4.2 23.8 49.9 5 074-86 C3C 66.8 21.4 11.8 1.2 2.9 4.9 30.5 27.3 9	5.5 6.1 19.9 61.5 11 .34 5.9 5.8 31.7 73.3 7 .32 9.8 11.6 39.5 59.2 12 .36
086-97 2046 33.9 35.9 30.2 1.2 2.9 4.1 16.9 8.8 6	6.0 29.9       25.1 25.2       27     .40
C97-122 2C76 11.4 77.8 32.8 +0 1.0 1.3 7.0 3.7 0	6.5 49.3 7.9 13.4 .42 0.7 40.3 17.2 22.0 25 .49
DEPTH (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)( BULK DENSITY )(	HATER CONTENT~) CARBONATE (PH)
VCL. ( WEIGHT 1 4AID 4AIH 4DI 48IC 48 CT CT 75-20 20-5 5-2 IT 20-2 1/3- OVEN COLF 1/1C 1/	BIC 482 4CI 6EIB 3AIA 8CIA 8CIE /3- 15- WRD LT LT 1/1 1/2
2 75 -C74 PCT BAR DRY BAR BA	AR BAR CH/ 2 .002 H20 CACL
COC-20 TR 0 0 0 TR 59 TR 1-21 1-34 -035 26 02C-36 TR 0 0 0 TR 59 TR 1-41 1-48 -016 17 C36-53 TR C 0 0 TR 54 TR 1-43 1-48 -012 12	5.6 12.8 .17 8 TR 7.8 7.6 9.6 .10 12 2 8.0 7.5 7.6 .07 18 11 8.3
	2.5 7.6 .07 18 11 8.3
053-74 TR 0 0 C TR 38 TR 1.60A 074-86 TR C 0 TR TR 44 TR 1.61B 1.66 .010 14.2	2.2 10 TR 8.3 4.3 .16 11 TR 8.3 4.7 12.2 .19 19 3 8.3
C86-57 8 C 0 8 5 61 13 1.54 1.60 .012 24 C97-122 TR C 0 TR TR 9C TR 1.50A	4.7 12.2 .19 19 3 8.3 19.8 2C 8.2
C97-122 TR C O TR TR 9C TR 1.50A 122-152 3 C O 3 3 75 6 1.46 1.55 .020 25	5.2 12.5 .18 20 TA 8.1
CEPTH (ORGANIC MATTER ) IRON PHOS (EXTRACTABLE BASES 584A) ACTY A	AL (CAT EXCH) RATIO RATIO CA (BASE SAT)
6AIA 6BIA C/N 6C2A 6SIA 6NZE 604C 6P2A 6QZA 6HIA 6G CRCN NITG EXT TOTL CA MG NA K SUM BACL KC CARE FE EXTB TEA EX	CL EXTS NHAC NHAC CA SAT EXTS NHAC
CARE FE EXTB TEA EX CM PCT PCT PCT PCT ( MEQ / 100 G	(T ACTY TO TO MHAC ACTY 
000-20 3.27C 13.4 1.9 .7 37.0 020-36 1.52 12.9 2.4 .3 28.6	23.6 1.18 15.0 .83
036-53 .ec 8.6 2.1 .2 19.0	7.8 .71
(53-74 -1C 5.1 1.1 -2 10.4 (74-86 -05 8.6 2.2 -3 15.4	4.C .57 7.4 .62
C86-97 .11 18.5 4.6 .6 29.8	15.5 .57

20.1 5.8

.6 35.1

14.2 .57

⁽A) ESTIMATEC.
(B) 1/10-BAR, METHOD 4AIG.
(C) 14 KG CF CARBON PER SQ METER TO A CEPTH CF 1 METER, METHOD 6A.

Soil classification: Typic Calciaquoll; coarse-loamy, frigid.

Series: Rockwell series. Pedon No.: S67MN-84-3.

Area: Wilkin County, Minnesota.

Location: NWINEISE sec. 35, T. 132 N., R.46 W. (Sunny Side Twp.); 1,060 feet west and 320 feet south

of the northeast corner of the southeast quarter.

Climate: Some characteristics of temperature in degrees F, are: annual normal - 43, winter normal - 13,

summer normal - 70; some characteristics of precipitation in inches are: mean annual - 21,

May to September - 14, mean annual snowfall - 40.

Vegetation: Soil bank field with brome grass, alfalfa, and quackgrass the dominant plants; native vegetation was species of the tall prairie plant formation.

Parent material: Moderately shallow, calcareous, loamy glacio-lacustrine sediments over calcareous,

Topography: Slope at site is level.

Drainage: Poorly drained.

Erosion: None.

Permeability: Moderate in the upper part, slow in the underlying material.

Sampled by: R. H. Jordan, G. S. Holmgren, R. A. Erickson and H. R. Finney.

Described by: H. R. Finney.

Ap 671602 0 to 20 cm (0 to 8 inches) Black (10YR 2/1) sandy clay loam; moderate fine and very fine granular structure; very friable; abundant roots; about 1 percent soft white crystalline bodies; strongly effervescent; abrupt smooth boundary.

A3 67L603 20 to 36 cm (8 to 14 inches) Very dark gray (10YR 3/1) sandy clay loam; about 20 percent fingers and coating of black (10YR 2/1); weak fine subangular blocky atructure parting to weak very fine granular structure; very friable; abundant roots; strongly effervescent; clear wavy boundary.

Clgca 67L604 36 to 53 cm (14 to 21 inches) Dark gray (2.5Y 4/1) sandy clay loam; weak fine sub-angular blocky structure parting to weak very fine granular structure; very friable; plentiful roots; violently effervescent; clear wavy boundary.

C2g 671605 53 to 74 cm (21 to 29 inches) Light brownish gray (2.5Y 6/2) loamy fine sand; common fine prominent dark brown (7.5YR 3/2) and very dark reddish brown (5YR 3/4) soft concretions; week medium subangular blocky structure; very friable; plentiful roots; slightly effervescent; clear wavy boundary.

C3g 67L606 74 to 86 cm (29 to 34 inches) Light gray (5Y 7/2) fine sandy loam; common fine faint olive (5Y 5/3) mottles; weak fine subangular blocky structure; very friable; few roots; common fine very dark brown soft concretions 1.0 to 2.0 mm in diameter; slightly efferwescent; clear wavy boundary.

IIC4g 67L607 86 to 97 cm (34 to 38 inches) Pale olive (5Y 6/3) clay loam; common fine distinct light olive brown (2.5Y 5/4) mottles; weak fine subangular blocky structure; friable; few roots; about 10 percent fine gravel; slightly effervescent; abrupt wavy boundary.

IIC5g 671608 97 to 122 cm (58 to 48 inches) Light gray to light olive gray (5Y 6/1 to 5Y 6/2) silty clay loam; many fine distinct light olive brown (2.5Y 5/6) and few fine faint dark grayish brown (2.5Y 4/2) mottles; weak medium prismatic structure parting to medium very fine angular blocky structure; friable; few roots; a few shipy pressure faces some of which have conducted and the structure.

SOIL Ronneby Series SOIL Nos. S63MN-5-5 LOCATION Benton Country, Missesote

SOIL SURVEY LABORATORY Incoln, Nebraska LAB. Nos. 18857-18866 August 1967 General Methods: 1A, 1B1b, 2A1, 2B

			V-4al						a anu peru	de diamete		3A1			<del></del>	1 6		
		<u> </u>	Total		<u> </u>			Send	ı	Sit	<u> </u>						rse fragme	nts 2 <b>A</b> 2
Depth	Morizon	Send	Sint	Clay	Very	Coarse	Medium	Fine	Very fine		Int. III	int. II				3B1.	322	
(in.)		(2-0.05)	10.05-	( = 0.002)	COBTSE	(1-0.5)	(0.5-0.25)	(0.25-0.1)	(0.1-0.05)	0.05-0.02	(0.02	(0.2-0.02)	(2-0.1)			2-19	2-19	
<b>,</b> ,		(0 4,	(0.05- 0.002)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(2-1)		,	(0.25-0.1)	(0.1-0.42)	0.00	0.002)	,,	(+ +,			Wt.	Vol.	
		4-					1. of =< 2							<u> </u>		Pet.	Pet.	
0-4	App	<b>43.1</b>	37.2	19.7	0.6	5.7	30.8	18.0	8.0	16.5	20.7	33.1 38.2	35.1			tr		
4-7	A21g	54.4	36.5	9.1	1.4	8.0	12.5	22.3	10.2	16.9	19.6	38.2	<b>Ы</b> 4.2			tr		
7-12	A22g	56.3	34.5		2.7	7.7	12.1	22.9	10.9	16.4	18.1	38.9	45.4			6	4	
12-17	Mg	50.6	33.1	16.3	3.6	6.1	9.8	20.6	10.5	17.2	15.9	38.2	40.1			1.7	11	
17-25	1821g	55.6	27.0	17.4	3.6	6.5	11.1	22.3	12,1	13.8	13.2	36.5	43.5			10	6	
25-33	B22g		23.5	13.6	4.1	8.4	12.2	25.7	12.5	13.1	10.4	38.7	50.4			1.0	6	
33-45	Hel.	70.8	25.5	3.7	3.7	10.0	15.1	27.4	14.6	JA.1	11.4	43.0	56.2			14	10	
45-56 56-61	Bac2	68.7	27.8	3.5	3.8	20.0	14.6	25.9	14.4	15.9	11.9	43.8	54.3			13	9	
56-61	Clx	57.6	36.6	5.8	3.8 4.0	7.9	11.8	21.1	12.8	و.قد ا	17.7	42.6	44.8			ıŭ	9	
61-72	(22x	60.4a		8.4	4.7	9.6	12.6	22.3	11.8	14.0	17.2	37.3	48.6	1		13	10	
,-					' '		i					3,10						
	'																	
117000-1	6Ala	6Bla	r -	Carbo	mate	-		Bulk densit	,	470	¥	/ster conte	nt .		Ī	Ī	рН	
			l		<u> 2003                                   </u>	TALA.	<b>4A1</b> d	HAJA			484	4181c	4182	400		$\overline{}$	T	8C
Depth	Organic	Mitrogen	C/N	бкиъ		Field		1/3-	Air-	COLE			15-	1/3-to				
(in.)	carbon				<b>CO002</b>		Bar	Bar	Dry		State	Bar		15-Bar				(1:1)
	h .			œ.	-													
	<u>lb</u> Pct.	Pct.		Pet.	Pet.	g/cc	호 호/œ	g/cc	g/cc		Pct.	Pct.	Pct.	in.An.				
0-4	4.83	0.384	72	1000	200.	1.32		1.36	_	0.017	29.0	26.4		0.16		<del>                                     </del>	1	5.9
4-7		0.078	13			1.65		1.65	1.65	0.01	16.6	18.8		0.23				6.0
4- ( 7÷12	1.03	0.034	13 14			1.65	2 -0	1.65	1.64	~	14.2	16.3		0.19	i			5.9
	0.48		111	1			1.58			0.000		14.1		0.10		+	1	5.6
12-17	0.39	0.035	#			1.53	1.35	1.52	7.23	0.003	15.9							2.0
17-25	0.26	0.025	11			1.55	1.46	1.55	1.01	0.013	17.6	16.6		0.13				5.6
25-33	0.25	-		7-3	1	1,66		1.64	1.71	0.013	15.3	14.4		0.12		+	+	6.0
33-45	0.10			-{=}		1.80	1.614	1.794	1.01	0.003	13.1	8.6		0.114				7.0
45-56	0.08			<b>-{s</b> }		1.86	1.684	1.850		0.003	12.6	10.2		0.15f				7.3
56-61	0.07	<b>├</b>		tr(a)	-	1.90	1.734	1.884	1.88		11.9	10.2		0.131	-	+	1	8.2
6172	0.11			1	-	1.98	1.764	1.964	1.97	0.003	10.5	10.14	3.5	0.121				8.4
		<u> </u>	<u>                                     </u>					Ļ								<u> </u>		ل
	L	Extractal		5 <b>Bl</b> a		6HDa		oh Car	ı						813		Base sat	
Depth	6102a	602a	6P2a	692a		Brt.		5Åla	KCL-		Ect.						503	5C
(in.)				l		Ac-L/HHay		MER, CAC			Iron				Ca/Ng		8um	NH, C
<b>,</b> ,	Ca	Mg	Na	K	Sum		Cataon	4	A].		8.6						Cattlorn	5
		1				l	l	I			Эe						l	۱
	4	_		_	meg/100 ;	ξ—	_	<del></del> -	<b>&gt;</b>		Pot.						Pct.	Pct
0-4	21.6	3.1	0.1	þ.2	25.0	13.0	38.0	26.9							7.0		66	93 86
4-7	6.5	1.1	0.1	þ.1	7.8	5.3	13.1	9.1							5.9		60	86
7-12	1.0	p.3	0.1	<b>þ.</b> 1	5.5	4.5	ס.סבן		ļ	<u> </u>					3.1	↓	55	85
12-17	6.0	3.4	0.1	þ.2	9.7	5.6	15.3	11.4		1				1	1.8		63 66	85
17-25	6.9	4.6	0.1	p.2	11.8	6.0	17.8	13.6		1				1	1.5			87
25-33	7.5	4.6	بده	h.2	32.h	4.7	16.5.	12.5							1.6	-	75	99
33-45	3.0	1.6	0.1	b.1	4.8	1.5	6.3	4.5		1				1	1.9		76	107
45-56	2.5g	0.8h	0.1	p.1	3.5	0.8	4.3	3.6							-		81	97
56-61	3.92	1.0h	0.1	5.3	5.1	<u> </u>		4.9				١٠		ļ	3.9	1	<u> </u>	
61-72	5.1g	1.4h	0.1	0.1	6.7			6.0							3.6			
						<u> </u>	<u>l</u> .			<u> </u>	<u> </u>			<u> </u>		<u> </u>		
	Patios 1	Clas	8111	-		a. (	Arbone	te gra	ins:	1-5 pe	rcent	(0.5-0	.05 🗪	ı ).				
Depth			hr 20-	_							thod 6				44.70			. 1
Depth (in.)	Milit OAc		15-Bar Water	r		c. (	alcula	ted to 1382).					we lght	of 2-	to 19	)- <b>m</b> n 1	ateris	1

	<u>Patios t</u>	تملک ه	8111	
Depth (in.)	MB _{it} OAc CBC		15-Bar Water	
0-4	1.37		0.75 0.54	
4-7	1.00		0.54	
7-12	0.71		o.48	
12-17	0.70		0.43	
17-25	0.78		0.46	
25-33 33-45 45-56	0.92		0.49	
33-45	1.22		0.57	
45-56	1.03		0.51	
56-61	0.84		0.43	
<u>56-61</u> 61-72	0.71		0.42	

d. 1/10-ber (Method &Alg).
e. 1/10-ber (Method &Bic).
f. 1/10- to 15-ber (Method &C2).
g. MB_CI-RIOH extract (Method 6R3a).
h. MB_CI-RIOH extract (Method 6O3a).

Soil classification: Aeric Fragiaqualf; coarse-loamy, mixed, frigid,

Soil: Ronneby series. Soil Nos.: 363MN-5-5.

Area: Benton County, Minnesota

Location: SWk of NWk Sec. 6, T36N, R28N, in open wooded pasture 300 feet east of old township road.

Vegetation: Bluegrass pasture with scattered elm, oak, maple, prickly ash.

Parent material: Red till - sandy loam.

Physiographic position: Nearly level ground moraine.

Slope: 1 percent. Erosion: None.

Drainage: Somewhat poor.

Permeability: Moderately slow

Ground water: 52 inches

Moisture: Wet

Stoniness: Surface stones and boulders are common. Described by: W. W. Anderson. Sampled October 2, 1963, by W. W. Anderson, M. F. Grimes, R. S. Farnham, G. Holmgren and R. L. Juve.

<u>Horizon</u>

LSL 18858

0 to 4 inches, black (10YR 2/1) loam; moderate fine and very fine granular structure; very friable; Aτ

LSL 18857 pH 6.2: clear smooth boundary.

A21g 4 to 7 inches, very dark gray (10YR 3/1) and dark gray (10YR 4/1) loam to fine sandy loam with common

fine distinct dark brown (10YR 4/3) to dark yellowish brown (10YR 4/4) mottles; moderate medium

and thin platy structure; very friable; pH 6.2; clear smooth boundary.

A22g LSL 18859 7 to 12 inches, dark grayish brown (10YR 4/2) loam to fine sandy loam with common fine distinct dark brown (10YR 4/3), dark yellowish brown (10YR 4/4) and (10YR 3/4) mottles; moderate medium platy structure; friable; upper faces of plates have dark gray (10YR 4/1) stains with few dark

brown (7.5YR 4/4) mottles; pH 6.1; clear smooth boundary.

12 to 17 inches, grayish brown (10YR 5/2) to brown (10YR 5/3) loam with many fine distinct dark brown (7.5YR 4/4 and 10YR 4/4) mottles; weak fine subangular blocky structure; friable; stone line Blg LSL 18860

in this horizon, cobbles 2-6 inches; pH 5.6; clear smooth boundary.

B21g 17 to 25 inches, dark brown (7.5YR 4/2) heavy loam with many fine faint brown (7.5YR 4/4) mottles; LSL 18861 weak to moderate thick and medium platy structure; friable; occasionally major vertical cleavage

faces coated with bleached sand; pH 5.4; gradual wavy boundary.

B22g 25 to 33 inches, finely mottled, dark brown (7.5YR 4/2 and 4/4), brown (7.5YR 5/2) and strong brown LSL 18862

(7.5YR 4/6) heavy loam or clay loam; weak to moderate thick and medium platy structure; friable;

moderately thick clay films in root channels; pH 5.6; clear wavy boundary.

33 to 45 inches, dark reddish gray (5YR 4/2) and reddish brown (5YR 4/3) sandy loam with many fine Bx1 LSL 18863

distinct reddish brown (5YR 4/4) and dark brown (7.5YR 4/4) mottles in the upper part of the

horizon grading to few in the lower part; weak medium platy structure; frigble, firm in place; stains of dark reddish brown (5YR 3/2-3/3) on surface of plates and around pebbles; pH 6.6; gradual

wavy boundary.

Bx2 45 to 56 inches, dark brown (7.5YR 3/3) and dark reddish brown (5YR 3/3) sandy loam to loamy sand; IST. 18864 with few coarse faint dark reddish brown (2.5YR 3/4) and reddish brown (2.5YR 4/4) mottles; weak

medium platy structure; friable, firm in place; pH 7.2; clear wavy boundary.

Clx 56 to 61 inches, reddish brown (SYR 4/4) sandy loam; weak thin and medium platy structure; friable

LSL 18865 to firm, very firm in place; pH 7.4; gradual wavy boundary.

C2x 61 to 72 inches, reddish brown (2.5YR-5YR 4/4) sandy loam; moderate to strong thin and medium

LSL 18866 platy structure; friable to firm, very firm in place; effervesces slightly with scid.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

1-04-N#072 - - - - 04 1102

COUNTY - - - MOWER

SOIL NO						COUNTY	•			70. 1	100. 70	1125							
GENERAL	MF 1 HQD										109~70								
CM	HORIZ	ON	SAND 2- .05	SIL† .05-	CLAY LT .002	FINE CLAY LT .000	vc os	CORS	LE SIZI SAND - MEDS -5- -25 - PC	FNES	VFNS - 10- - 05	COS1	9A1, SILT- FNSI .02 .002	3A1A, VFS1 .005-	JA18 FAML TEXT SAND 21	INTR II .2- .02	FIME CLAY TO CLAY	HON- CO3- CLAY	RATIO BD1 15- BAR TO CLAY
038-56 056-78 078-101 101-135 135-170 170-205 205-265 265-315 315-375 375-38	AZ2 AZ3 86A ZB24T 2822T 283 3C1 3C2 3C3 3C4	(A)	63.2 81.1 78.3 62.8 87.2 10.3	62.0 65.7 67.7 67.1 50.0 21.1 18.9 19.7 8.5 12.1 27.5 69.0	26.7 21.4 22.2 25.7 28.1 19.0 17.4 18.2 17.1 10.4 9.1 9.1 9.7	17-1 13-7 12-2 13-5 16-6 11-8 10-3 10-7	.3 .5 .4 1.0 3.6 5.3 6.1 11.0 6.3 1.4	2.7 3.1 2.5 1.6 3.9 10.7 11.5 12.6 21.7 15.8 11.3	3.0 3.5 2.6 1.7 5.2 14.5 14.7 12.9 18.5 17.2 2.6	3.6 4.1 3.1 2.0 8.6 22.5 21.9 22.5 22.8 28.0 22.2 24.1	9.5 8.5 9.1 6.3 10.2 10.7 3.7	9.5 5.0 8.0 18.8 3.3 26.6	10.2 3.5 4.1 8.7 2.9 42.4			26.7 27.5 27.5 31.3 32.4 32.5 30.9 28.0 28.0 20.5 30.3 38.4 23.9			.70 .48 .43 .44 .38 .36 .36 .38 .43 .52
DEPTH :	(PARTIC VOL. ( GT 2 PCT	LE SI 61 75 PC1	ZE AN	NLYSIS WE - PCT	, MM, 1 IGHT - 5-2	15, 38; LT .074	20-2 PCT LT20	1 800 2 4410 1/3- 8AR G/CC	LK DEN: 4A1H OVEN DRY G/CC	51TY 401 COLE	4816 1/10 8AR PC T	WATE 461C 1/3- BAR PCT	R CD 482 15- 8AR PCT	NTENT- 4C! NRD CM/ CM		CARBO 6618 LT 2 PCT	DNATE BAIA LT .002 PCT	(PH 8G1A 1/1 H2G	8C1# 1/2 CACL
000-9 009-19 019-38	TR TR TR TR TR 1 2 2		O O TR TR TR TR TR O O TR O	7 A 0 0	TR	90 88 91	TR TR TR TR TR 2 4 5 13 4 TR TR	1.00c 1.20c 1.34 1.32 1.36 1.60c 1.85		.020 .035 .048 .015 .022	27.6 28.6 27.1 13.3 14.1	25.6 26.2 25.4 12.3 13.0	18.6 10.7 9.5 11.4 12.0 7.2 6.5 6.5 4.5 4.0 4.1 3.4	.22 .20				4.8 4.5 4.5 4.5 4.5 5.6 6.2 6.3 6.2	4.1 4.1 4.1 4.2 4.9 5.6 7 5.7 5.8
DEPTH (	641A DRGN CARB PCT	681A NITS PCT	C/N	6C 2B EXT FE PCT	TCTL PCT	CA CA	TRACT. 602D MG	ABLE BA 6PZB NA	ASES 51 6Q2B K - →ME6	5UM EXTB 2 / 10	ACTY 6H1A BACL TEA C G-	AL AG1E KCL EXT	TAD) AEAR BTX3 ACYY	EXCH) SAGA NHAC	RATIO BD1 MMAC TO CLAY	RATIO AD3 CA TO MG	GA SF1 SAT NHAC PCT	(BASE	SAT) SC1 NHAC
050-9 009-19 019-38 038-56 056-78 078-101 101-135 135-170 170-205 205-265 265-315-375 375-435 000-38	5.850 1.79 0.63 0.52 0.41 0.22 0.18 0.11 0.08 0.08 0.11	.496	12 11 8 9 11	0.9 0.9 1.0 1.1 1.0 0.7 1.3 0.6 1.1 2.1		14.3 3.0 3.4 6.1 7.4 5.1 5.3 6.2 4.4 3.8 4.4	5.4 2.4 4.4 53.7 3.4 4.2 2.6 2.0	0.1 0.2 0.2 0.2 0.2 0.3 0.4 0.2	0.7 0.2 0.4 0.2 0.3 0.3 0.3 0.2 0.2	20.7 5.8 6.2 10.9 13.4 9.2 9.1 11.0 11.1 7.4 6.2 7.1	23.2 16.1 12.4 11.1 10.8 5.4 3.3 2.7 1.5	0.2 3.1 3.0 2.3 2.9	43.9 21.9 18.6 22.2 14.6 12.4 13.7 12.6 8.9 7.73	32.4 17.4 14.7 18.4 20.5 12.6 10.3 11.3 11.0 7.7 6.3 7.7	1.22 0.81 0.66 0.72 0.73 0.66 0.59	2.6 1.3 1.4 1.5 1.4	44 17 23 36 40 51 55 56 57	47 26 33 50 55 63 73 80	63 33 42 59 65 73 88 97 101 96 98 100 69
OEPTH C	(SATURA 861 8 REST OHM- CM	C1B PH	8A H2G	NA 5D2 ESP PCT	NA 5E SAR	SALT 8D5 TOTL SGLV PPM	OF LA	8A1A EÇ 4M4DS/	CA	AG NG	SATURA 6P18 NA	K	611A C03	HCD3	CL CL	46 1A \$04	6M1 A NO3	4F1 L010 L#11	4F2 PLST
000-9 009-19 019-38 038-56 056-78 078-101 101-135 135-170 470-205 205-265 315-375 375-435 000-38	6400	4.4	28.4	2	l	20		0.16	0.4	0.3	0.3	0.1						56E 39E	20
AMALYSE: ST PAUL PHORUS, PHORUS, DEPTH CM 000-9 009-13 019-38 038-56 056-76 078-101	, MN. NITRIC BRAY'S ( MONT ( 30 35 35 35 35	#IME8 -PERC ND 1 -PGT -PGT 20 25 20 20 20	#LOGY: #LORIG EXT## MINEF 	X=RA OIGE CTANT RALDGY TE K 22 MM-	AQL QU	JARTZ	TOTAL LABLE (	AVAII 5/A	(6) - (0) - (1)	PLI: SAM EST ORG:	NG PIT. PLED IN IMATED. NNIC CA	SOYBE	AN FI	ELO 80	M SOUT	TH OF S	70MN-5	77 OF 60-1. 1 (64). N, NE.	
101-135 135-173 170-205 205-265 265-315 315-375 375-435	50 50 40	25 20 20 20 20 20 20	15 25 30 26 25 35 21	5 5 5 5	16 10 5 5 5	0 0 0 0	440 666	17 12 13 12 16		·									

Pedon classification: Aeric Glossaqualf; fine-loamy, mixed, mesic.

Series classification; Typic Glossaqualfs; fine-loamy, mixed, mesic.

Soil: Sargeant taxadjunct*.

Soil No.: S70MN-50-1.

Location: Mower County, Minnesota; about 1/2 mile west of Brownsdale; about 40 feet west, and 90 feet north of southeast corner of SWI/4, NWI/4, Sec. 9, T. 103 N., R. 17 W.; about 92 deg. 53 min. west longitude and 43 deg. 44 min. north latitude.

Climate: Humid continental. Some features of precipitation in inches: annual normal - 30, May through September - 19, annual normal snowfall - 40. Some features of temperature in deg. F.: annual normal - 45, summer normal - 70, winter normal - 17.

Parent material: Loamy mantle (loess?) over loamy Kansan(?) till with intervening stone line; weathered outwash under the till.

Physiography: Central Lowlands; Iowan Erosion Surface (Ruhe); Rochester Till Plain (Wright); Claremont-Lyle Plain, silty, level (MN Soil Atlas).

Landscape setting: Site has a plane 1/2 percent slope. Topography in immediate area is mostly nearly level and gently sloping, and relative relief is about 10 feet. Elevation is about 1,285 feet. Vegetation: Mixed oak forestry with red oak dominant. Native vegetation was probably savanna.

Drainage: Poorly drained.

Erosion: None.

Moisture: Moist throughout.

Permeability: Moderately slow or slow.

Described by: J. F. Cummins on October 21, 1970.
Sampled by: R. B. Grossman, E. R. Gross, R. H. Rust, J. F. Cummins, and H. R. Finney on October 21, 1970.

Al 70Lll09 0 to 9 cm (0 to 3 inches) Elack (10YR 2/1) silt loam, very dark gray (10YR 3/1) rubbed; weak fine granular structure; friable; abrupt smooth boundary.

A21 7011110 9 to 19 cm (3½ to 7½ inches) Dark grayish brown (2.5Y L/2) silt loam, light brown ish gray (2.5Y 5/2) dry; few fine faint dark gray (10YR L/1) and common fine distinct dark brown (10YR L/3) mottles; moderate thin platy structure; friable; few black (10YR 2/1) wormcasts; abrupt smooth boundary.

A22 7011111 19 to 38 cm (72 to 15 inches) Grayish brown (2.57 5/2) silt loam, light gray

Pedon classification: Aeric Glossaqualf; fine-loamy, mixed, mesic. Series classification: Typic Glossaqualfs; fine-loamy, mixed, mesic.

Soil: Sargeant taxadjunct*.

Soil No.: S70MN-50-1.

Location: Mower County, Minnesota; about 1/2 mile west of Brownsdale; about 40 feet west, and 90 feet north of southeast corner of SW1/4, NW1/4, Sec. 9, T. 102 N., R. 17 W.; about 92 deg 53 min. west longitude and 43 deg. 44 min. north latitude.

Climate: Humid continental. Some features of precipitation in inches: annual normal - 30, May through September - 19, annual normal snowfall - 40. Some features of temperature in deg. F.: annual normal - 45, summer normal - 70, winter normal - 17.

Parent material: Loamy mantle (loess?) over loamy Kansan (?) till with intervening stone line; weathered outwash under the till.

Physiography: Central lowlands; Iowan Erosion Surface (Ruhe); Rochester Till Plain (Wright); Claremont-Lyle Plain, silty level (MN Soil Atlas).

Landscape setting: Site has a plane 1/2 percent slope. Topography in immediate area is mostly nearly level and gently sloping, and relative relief is about 10 feet. Elevation is about 1,285 feet. Vegetation: Mixed oak forestry with red oak dominant. Native vegetation was probably savanna.

Drainage: Poorly drained.

Erosion: None.

Moisture: Moist throughout.

Permeability: Moderately slow or slow.

Described by: J. F. Cummins on October 21, 1970

Sampled by: R. B. Grossman, E. R. Gross, R. H. Rust, J. F. Cummins, and H. R. Finney on October 21,

IIB22t 70L1116 135 to 170 cm (53 to 67 inches) Yellowish brown (10YR 5/6 and 5/8) sandy losm; strong coarse prismatic structure; very firm; many clay films in pores and a few thin clay films on ped faces; gray (10YR 6/1) thin ped coatings of clean sand and silt particles; about 4 percent coarse fragments; abrupt wavy boundary.

IIB3 70Ill17 170 to 205 cm (67 to 80 inches) (Auger sample) Yellowish brown (10YR 5/6 and 5/8) sandy loam; friable; abrupt boundary.

IIICl 7011118 205 to 265 cm (80 to 104 inches) (Auger sample) Yellowish brown (10YR 5/6) coarse loany sand; abrupt boundary.

IIIC2 7011119 265 to 315 cm (10h to 12h inches) (Auger sample) Yellowish brown (10YR 5/8) layered silt loam and coarse sand; abrupt boundary.

IIIC3 7011120 315 to 375 cm (124 to 147 inches) (Auger sample) Layered yellowish brown (10YR 5/4) fine sandy loam and yellowish brown (10YR 5/8) coarse sand; abrupt boundary.

IVICL 7011121 375 to 435 cm (147 to 171 inches) (Auger sample) Light olive brown (2.57 5/4)
layers of medium, coarse and very coarse sand.

*This pedon is outside the range of the Sargeant series because it lacks a calcareous loam IIC horizon beginning within depths of 84 inches.

Remarks: The samples were collected from a pit that was dug with a backhoe. Sample 70Ill22, 0 to 38 cm, is a composite of several surface samples in the immediate vicinity of the sampling site. Pedon S70Minn-50-2 is located about 80 m south of S70Minn-50-1 in a soybean field. Samples of the 0 to 18 cm, 70Ill23, and 18 to 32 cm, 70Ill24, layers were collected from it. The Ap, 0 to 18 cm was a dark gray (10TR 1/1) silt loam with inclusions of grayish brown (10TR 5/2) and it had weak fine granular structure and friable consistence.

SOIL	CLASSIFICATION Udic Haploboroll;	coarse-loamy, mixed
soil	Series not designated	LOCATION Stevens County, Minnesota
SOIL	NOS. <u>S57MN-75-3</u>	LAB. NOS. 6100-6105
SOTL	SURVEY LABORATORY Lincoln, Nebraska	DATE September 3, 1957

				PART	CLE SIZ	E DISTRIE	WTION (in	mm.) (p	or cent)	.3A1		<del>,</del>
DEPTH INCHES	HORIZON	VERY COARSE SAND 2-1	COARSE SAND	MEDIUM SAND		YERY FINE SAND	SILT 0.05-0.002	CLAY		0.02-0.002	2A2 >2	TEXTURAL CLASS
0-7 7-14 14-24 24-35 35-48 48-60	Ap B2 Cca C1	2.9a 2.4a 7.4b 7.2b 0.1b 4.7b	8.1 5.6 7.1 7.6 2.6	8.8 7.1 7.1 8.7 7.2 8.0	17.0 18.4 16.6 23.7 18.2 22.2	13.2 17.7 13.2 15.1 17.3	32.2 33.6 36.0 27.0 39.6	17.8 15.2 12.6 10.7 15.0 12.1	41.9 51.4 42.6 44.3 52.7	13.7 11.9 17.0 12.4 16.0	1 2 10 11	l l fsl fsl fsl
	pH	8cla	ORG	NIC MA	TTER	*****************************	ELECTRI-	6Ela	************	MOIST	WRE TI	i ENSIONS
SATU- RATED PASTE	1:5	1:10	6Ala ORGANIC CARBON	6Bla NITRO-	C/N	ESTA SALT (BUREAU CUP)	ELECTRI- CAL CONDUC- TIVITY EC * 103 MILLIMHOS PER CM BAJA	CaCO ₃	GYPSUM ==e./100g. SOIL	1/10 ATMOS.	1/3 ATMOS. %	15 ATMOS.
7.6 7.7 8.1 8.1 8.2 8.2	7.8 8.0 8.8 8.9 8.8	7.8 8.0 8.9 9.1 9.0	0.83		10		0.5 0.5 0.6 0.6 0.6	- 28 22 22 27				
5Ala	***************************************	EXTRAC	TABLE	CATIONS	5Bla	######################################	SATU	RATION	EXTRAC	T SOLU	LE8A1	8a
CATION XCHANGE APACITY IEU _I AC		602b Mg	M olenta per	6P2a No 100c. sel	692a K	Base Sat.	6Pla Ma	6Qla K	Ca.	601a Mg		MOISTURE AT SATU- RATION %
18.5 13.1 6.1 5.7 7.6 5.8	18.0 11.2	3.4		0.1 0.1 0.1 0.1	0.3 0.1 0.1 0.1 0.1		0.3 0.4 0.5 0.7 0.7	0.1 0.1 0.1 0.1 -	3.4.4.6 2.6.3 2.0.0	1.4 1.6 1.7 1.9 2.2 3.2		40.3 38.2 30.0 26.6 33.3 28.4
b. Fe	w blac w CaCO action	g conc	retion	concre s in s	tions and fr	in sand action;	fractio few bla	n (Mn? ck irr	). egular	concr	etions	in sand

Soil: Series not designated.

Soil Nos.: S57.MN-75-3.

Location: SE of NW 1/4 Sec. 23, T125N, R41W, Stevens County, Minnesota.

Topography: Gently rolling ground moraine. Sample taken on 3-percent slope facing to the northwest.

Drainage and permeability: Well drained, runoff is medium. Permeability is moderately rapid in B horizon and rapid in that part of the C horizon which is sandy.

Programme organization Carte advisora

Collected by: L. T. Alexander, J. S. Allen, R. F. Dever, and A. S. Robertson, August 11, 1957. Described by: A. S. Robertson.

Ap 6100 0 to 7 inches Black (10YR 2/1) moist loam; friable; cloddy structure; lower boundary is abrupt and smooth.

B2 6101 7 to 14 inches Dark brown (10YR 3/3 to 4/3) moist, loam; friable; weak coarse and medium prisms; (no secondary structure was noted but may have been present), some very thin patchy clay skins on faces of prisms; lower boundary was clear and smooth. A few small vertical channels, 2 to 5 mm in diameter, filled with limy material from the Cca horizon were present.

14 to 24 inches Yellowish brown (10YR 5/4) moist, loam; very friable; lime disseminated throughout the 6102 mass; violent reaction to HCl.

6103 24 to 35 inches Yellowish brown to light clive brown (10YR 5/4 to 2.5Y 5/6) moist, sandy loam; very friable; reacts violently with HCl. Lower boundary is clear and wavy.

35 to 48 inches Light olive brown (2.57 5/4 to 5/6) moist, loam; common small distinct yellowish brown and light brownish gray mottles; massive; very friable; reacts violently with HCl. Lower boundary is clear and wavy.

6105 48 to 60 inches Uniformly mixed light olive brown (2.5Y 5/4) and (2.5Y 5/6) moist, fine sandy loam; very friable; single grain structure with some coherence. This material appears to have very thin layers of fine sands, very fine sands and silts.

ì		
	· · · · · · · · · · · · · · · · · · ·	
7		
l.	17	
i		
, <b>, , ,</b> ,	Π A' · p <del>· · · · · · · · · · · · · · · · · ·</del>	
4		
J	·	
• _		
-		
_		
_		
,	N ₁	
_		
[		
	A. Burgu —	
•	Angu-	
•	A large —	
	Angu-	

SOIL CLASSIFICATION Typic Haplaquept; fine-loamy, mixed, frigid

SOIL Series not designated LOCATION Koochiching County, Minnesota

SOIL NOS. S58MN-36-3 LAB. NOS. 9107-9112. 9125

SOIL SURVEY LABORATORY Lincoln, Nebraska DATE May 1959

GENERAL METHODS 1A, 1Bla, 2A1, 2B

1101a + 624444444   12444	#1 >4 <b>44E0\$0\$140</b> 01400	(*)  -  -  -  -  -  -  -  -  -  -  -  -  -	0 e 7 t <b>90 9</b> =5 * 2 <b>8</b> 4 4 4 <b>9 9</b> 9			E DISTRIB					**************************************	1) T 200 S 4 S 2 S 200 A 11 S 70 C 200 C
DEPTH INCHES	HORIZOH	VERY COARSE SAND 2-1	COARSE SAND 1-0.5	MEDIUM SAND	FINE SANO 0. 25-0, 10	VERY FINE SAND	\$ILT 0.05-0.002	CLAY		Q02-Q002	2A2 > 2	TEXTURAL CLASS
0-4 4-8 8-16 16-26 26-36 36-44 0-6	Al Clg C2g C3g C4g C5		2.7a 7.2c 2.8d 3.9d 4.4d 3.4d	3.4d 4.1d 4.7d	3.3b 9.3c 9.1d 10.1d 15.1d	5.1c 7.1d 8.3d 11.6d	36.5	52.5 40.8 51.5 34.9 25.9	11.1 18.1 19.8	28.5 16.3 17.5 25.0	- 7 2 1 4 6	c c cl l
8C1a	9H 1:5			GEN	TTER C/N	Free Iron Fe ₂ 0 ₃	ELECTRI- CAL CONDUC- TIVITY EC:103 MILLIMHOS PER CM	equiv-	GYPSUM me./100g. SOIL	MO151 1/10 ATMOS. %	URE TE	NSIONS 4B2 15 ATMOS.
7.3 7.6 8.0 8.3 8.3			0.28 0.87 0.35 0.18 0.14 0.20	0.755 0.096 0.036 0.020	9 10	1.0 0.8 0.6 0.6 0.6		7 7 16 23 27		.76 	70	29.9 13.8 16.8 12.7 9.3
	<b>1494</b> 44 <b>4164</b> 64		TABLE (			501		581 s	5∆3e.		**<*************	

Soil classification: Typic Haplaquept; fine-loamy, mixed, frigid.

Soil: Series not designated.

Soil Nos.: S58MN-36-3.

Location: SE NE NE 1/4 Sec. 14, T68N, R23W, Koochiching County, Minnesota. Sample collected in wooded area adjacent to a cultivated field.

Vegetation: Aspen and alder.

Parent material: Clay loam till (lacustrine clays reworked by glacier).

Topography: Nearly level; slopes are less than 1 percent.

Drainage: Poor. Permeability: Slow.

Ground water: At about 16 inches.

Stoniness: There was an occasional stone in the pedon.

Collected by: A. H. Paschall, M. Scilley, and J. K. Ableiter.

Described by: A. H. Paschall.

Ao 2 to 0 inch. Black (5Y 2/1 to 2/2) mat of organic material. Contains some woody material.

Al 9107 0 to 4 inches Black (10YR 2/1) silty clay loam; moderate very fine subangular blocks; friable when moist; plastic when wet; contains many roots and a few pebbles; pH 7.5; clear wavy boundary. 2 to 4 inches thick.

Clg 9108 4 to 8 inches Olive gray (5Y 5/2) heavy clay loam; moderate very fine angular blocks; plastic and sticky when wet; roots plentiful; some small pebbles; some peds have surface coatings of dark gray (5Y 4/1); pH 7.5; gradual wavy boundary.

C2g 9109 8 to 16 inches Gray (5Y 5/1) to olive gray (5Y 5/2) silty clay; moderate very fine angular blocky structure; plastic when wet; roots plentiful; pH 7.5; gradual wavy boundary.

C3g 9110 16 to 26 inches Light olive gray (5Y 6/2) to olive gray (5Y 5/2) clay loam; moderate very fine angular blocky structure; plastic when wet; many small faint mottlings of yellowish brown (10YR 5/4) and olive (5Y 5/3); few roots; many small pebbles; pH 7.5; gradual wavy boundary.

Chg 9111 26 to 36 inches Light olive gray (5Y 6/2) to olive gray (5Y 5/2) clay loam; weak very fine angular

gradual wavy boundary.

C5 9112 36 to 44 inches Light olive gray (5Y 6/2) to olive gray (5Y 5/2) clay loam; massive; plastic when wet; effervesces with acid.

Remarks: All colors are for moist soils unless otherwise noted.

A sample (LSL 9125) was taken from a cultivated field near the site for determination of organic carbon and nitrogen. Location 0.2 mile north of the southeast corner, Sec. 14, T68N, R23W.

SOIL	CLASSIFICATION Mollic Haplaquept; coarse	-loamy, mixed, frigid
soil	Series not designated	LOCATION Wadena County, Minnesota
SOIL	Nos. <u>s58411-80-1</u>	LAB. NOS. 9113-9117, 9128
soil	SURVEY LABORATORY Lincoln, Nebraska	DATE May 1959

GENERAL METHODS 1A, 181a, 2A1, 2B

***************************************	**************************************			PARTI		E DISTRIE	UTION (in				3 <b>Al</b>	
DEPTH INCHES	HORIZON	VERY COARSE SAND	COARSE SAND	MEDIUM SAND	FINE SANO	VERY FINE SAND	SILT	CLAY			> 2 2A2	TEXTURA CLASS
		2-1	1-0.5	0.5-0.25	0. 25-0. 10	0.10-0.05	0.05-0.002	< 0.002	0.2-0.02	Q02-Q002		
0-6	Al	2.5	10.2	10.4	14.8	6.2	40.9	15.0	29.3	24.4	-	1
6-12	Clg	4.2	13.8	13.6	19.3	7.2	34.5	7.4	31.2	18.9	9	sl
12-23	C2g	6.4	11.9	11.4	17.3	6.7	26.7	19.6	26.9	14.1	9	sl
23-36	C3g	5.8	13.3	13.7	23.6	8.8	19.3	15.5	28.6	10.4	6	sl
36-44	C	7.2a	16.0a	14.5a	21.9a	8.3a	20.7	11.4	27.5	11.2	5	sl
0-7	Ъ											
	_											
10 <b>92-1109</b> 17-19 <b>8-108</b> -117-1	mH	}}***************	ORG/	NIC MA	tter	6C1a	ELECTRI-	6Ela	- PROCESSION NAMED IN	MOIST	URE TE	NSIONS
8Cla	i 1	i	6Ala		*	Free	CAL CONDUC-					4B2
COLG			ORGANIC			Iron	EC x 103		GYPSUM me,/100g.	1/10	1/3	15
	1,5	1:10	CARBON	GEN	C/N	Fe ₂ 03	MILLIMHOS PER CM		SOIL.	ATMOS.	ATMOS.	ATMOS.
1:1			*	. %		- 1/3		%	<u> </u>	76		%
6.4			4.28	0.322	13	0.6		İ				11.5
7.6			0.16	0.021	8	0.5	•	◁	į			2.5
7.3			0.13	0.019	1 .	1.0		d				8.2
7.6			0.06	0.012	5	0.7		1	ļ			5.8
8.2			0.04	60		0.5		2				4.0
1			3.666	0.029	ь тзь				•	,		•
							į	ļ ·				
.00010000000000000000000000000000000000	**********	703403400aa>88.>61	**************	uo2/189248884444	1000-100120300104			} 		***********	*******	 
5Ala			TABLE (			5C1	503	5B1a	5A3a	8D3		
CATION EXCHANGE CAPACITY	6 <b>N</b> 2b	602ъ	6нца	6P2a.	692a	Base	Base	Sum	Sum			MOISTUR
	Co	, Ma	н	No	K	Sat. %	Sat. %	Bases	Cations	Ca/Mg		SATU- RATION
NH ₄ Ac	[	ad Micaniu	cients per	100g. soll	 	NH) ₄ Ac	on Sum	me/	ioog			ŧ
~~~~	10.				,	Exch	Cations					<del>5</del>
22.3	18.9	3.2	7.7	<0.1	0.2	100	74 87		30.0	5.9		Ī
5.0	4.5 12.4	0.8	0.8	<0.1 <0.1	<0.1 0.2	106 108	87 88	5.3 14.9	6.1 16.0	5.6 5.4		İ
13.8 10.7	9.7	2.3	2.0 1.2	<0.1	0.2	113	91	12.1		4.2		
7.2	7.1	1.6	<0.1	♥.1 ♥0.1	0.1	113	J-	15.1	د•رــ	7.2		İ
(• =		1.0	~~	~.1	V•#			l	Ì			
							į					
a. Co	nmon C	CO2 C	pncret	lons.			į	Ī	1			_
b. Sa	mple f	rom cu	Ltivat	ed fie	rg 300	yards v	est of	site,	p to 7	inche	, LSL	9128.
												l
,							ļ] [
,							į					l
					İ			l				
					•		i	1]			i
								•	3		i	
								Ĭ				

Soil classification: Mollic Haplaquept; coarse-loamy, mixed, frigid.

Soil: Series not designated.

Soil Nos.: S58MN-80-1.

Location: Sec. 8, T135N, R35W, Wadena County, Minnesota. Site is 100 yards west of road and 0.6 mile north of south boundary of section (near Air Force Base).

Vegetation: Willow, elm, and sedge.
Parent material: About 3 feet of alluvial deposition over sandy loam till.

Physiography: Site occupies a shallow, concave depression. Slope: Less than 1 percent.

Drainage: Poor to very poor.
Permeability: Moderate.
Ground water: Occurs at 36 inches.

Stoniness: There are a few stones and boulders on the surface and in the pedon.

Collected by: A. H. Paschall. Described by: A. H. Paschall.

Pr

Al 9113 O to 6 inches ture; friable when moist; Black (10YR 2/1) silty clay loam to clay loam; moderate very fine subangular blocky structure; friable when moist; roots plentiful; pH 7.5 plus; gradual wavy boundary.

CLY CILL 6 to 10 inches Civers (2.5V 6/1) to wanted the brown (0.5V 6/0) conduction on light class look come work films

SOIL	CLASSIFICATION Mollic Haplaquept; of	oarse-loamy, mixed, frigid
som	Series not designated	LOCATION Wadena County, Minnesota
SOIL	NOS. <u>858MN-80-3</u>	LAB. NOS. <u>9118-</u> 9123, 9129
SOIL	SURVEY LABORATORY Lincoln, Nebraska	DATE <u>May</u> 1959

GENERA	L METHO				2A1,_2I							
							UTION (in			3 <u>Al</u>		#*************************************
DEPTH INCHES	HORIZON	VERY COARSE SAND	COARSE SAND	MEDIUM SAND	FINE SAND	VERY FINE SAND	SILT	CLAY		·	2A2 > 2	TEXTURAL CLASS
		2-1	1-0.5	0.5-0.25	0, 25-0, 10	•	0.05-0.002	< 0.002	0. 2-0. 0 2	Q02 -Q 002		
0-5 5-16	Al Al2	4.9 4.8			9.8 16.0	3.8 6.4		35.0 17.8	18.1 25.3	18.2 15.8	tr 8	cl sl
16-21 21-33 33-48	Clg C2g C3g	7.2	:	11.9	14.8 15.6 24.9	6.4 6.7 10.0	30.8	20.0 15.6 10.1	27.9 30.7 32.7		9 14	1 sl
48-54 0-8	C4 <u>b</u>				21.0a		15.9 18.6	8.3	29.8		13 10	sl cosl
27.1624499977168188191781	р Н	J acost obl et00 ₆₅₃₄ 8		NIC MA	TTER	6Cla	ELECTRI-	6Ela	************	MOIST	URE TE	
8cla	1:5	1:10	6Ala ORGANIC CARBON	6Bla		Free Iron Fe O	CAL CONDUC- TIVITY EC 109 MILLIMHOS	CaCOs	GYPSUM me./100g. SOIL		1/3	4B2 15 ATMOS.
1:1			*	*		Fe ₂ 03	PER CM	%		%	%	%
5.5 5.8 5.9 6.5 7.9 8.3			0.76 0.30	0.522 0.063 0.032 0.022	12 9	1.6 1.3 1.0 0.6 1.0		ل اء (21.4 8.6 9.0 6.9 3.7 3.1
5Ala CATION EXCHANGE CAPACITY	6м2ь	602b	TABLE 6Hla	6P2a	5Bla 6Q2a	5Cl Base Sat. %		5Bla Sum Bases	5A3a Sum	8D3 Ca/Me	p) {************************************	MOISTURE AT SATU-
NH _L Ac		Mg millinguiv	dents per	No 100a. soi		NH, Ac	on Sum Cations					RATION
43.5 18.8 18.8 13.6 7.2 5.5	30.6 12.6 12.3 8.9 5.9		21.9 6.5 4.1 1.6 0.8 \lozenge .1	0.1 0.1 0.1 0.1 0.1	0.4 0.2 0.2	Exch. 87 95 100 107 128	63 73 82	me/1 37.9 17.9 18.9 14.5 9.2	59.8 24.4 23.0 16.1 10.0			75
a. Con b. San	mon Ca	CO3 co	ncreti tivate	ons. d fiel	d near	site,	0 to 8	inches	LSL	9129.	-	

Soil classification: Mollic Haplaquept; coarse-loamy, mixed, frigid.

Soil: Series not designated.

Soil Nos.: S58MN-80-3.

Location: NW 1/4 Sec. 30, T136N, R35W, Wadena County, Minnesota. Site is located 100 yards west of road through section and 50 yards south of road on north boundary of section. The sample was collected in a wooded

area that has been pastured.

Vegetation: Alder, dogwood, and aspen. There was a cover of clover on the ground.

Parent material: Alluvial deposits on sandy loam till.

Physiography: The soil occupies a shallow concave depression; the low part of the depression is a peat bog.

Slope: Less than 1 percent. Drainage: Poor to very poor.

Permeability: Moderate.
Ground water: Occurred at about 42 inches.

Stoniness: A few stones and boulders occur on the surface and in the pedon.

Collected by: A. H. Paschall. Described by: A. H. Paschall.

Al 9118 0 to 5 inches Black (10YR 2/1) silty clay loam; moderate very fine subangular blocky structure; friable when moist; roots plentiful; pH 6.0; clear wavy boundary, 3 to 8 inches in thickness.

Al2 9119 5 to 16 inches Very dark gray (10YR 3/1) to dark gray (10YR 4/1) silty clay loam; weak very fine sub-angular blocky structure; friable when moist, slightly plastic when wet; roots plentiful; few pebbles, pH 6.0; clear wavy boundary, 3 to 12 inches thick.

Clg 9120 16 to 21 inches Dark grayish brown (10YR 4/2) and grayish brown (10YR 5/2) (about 60-40 mixture in color) clay loam; moderate fine angular blocky structure; slightly plastic when wat; roots few; pH 6.0; clear wavy boundary.

C2g 9121 21 to 33 inches Grayish brown (2.5Y 5/2) clay loam; weak fine subangular blocky structure; slightly plastic when wet; common medium distinct dark brown (7.5YR 4/4) mottles; occasional dark gray (10YR 3/1) coatings on some ped faces; roots few; pH 6.0; clear wavy boundary.

C3g 9122 33 to 48 inches Grayish brown (2.5Y 5/2) sandy loam; massive; friable when moist; very slightly plastic

C4 9123 48 to 54 inches Grayish brown (2.5Y 5/2) sandy loam; massive; friable; few small distinct dark brown (7.5YR 4/4) mottles; weak effervescence with acid.

Remarks: All colors are for moist soils unless otherwise noted.

A sample (LSL 9129) was taken from a cultivated field near the site for determination of organic carbon and nitrogen. Location 100 yards east of corner and 50 yards north of south boundary road SW SE 1/4 Sec. 30, T136N, R35W.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN.-NERRASKA.

COUNTY - - - WILKIN SCIL NO - - - - - 67MN-84-1

GENERAL METHCCS- - -14.1818.241,28

SAMPLE NOS. 671577-671585 FEBRUARY 1977

++														_		•••			
DEPTH	HCRI.	ZCN	(PARTIC	LE SIZE	ANAL'	YSIS, 1	LT 2MM	, 3A1, -S1LT-	3A1A,					
			SAND	STIT	CLAY	CLAV	vens	cnes	MEDS	ENES	VENS	COST	ENSI	VEST	TFXT	T 1	CLAY	CO3+	
			2-	.05-	LT	LT	2-	1-	.5-	-25-	-10-	.05	.02 .COZ	.005-	- SAND	• 2 -	TO	CLAY	BAR
			•05	•CC2	.C02	.000	2 1	.5	•25	.10	.C5	•02	.C02	.002	21	•C2	CLAY		TC
C#									PC	T LT Z									
CCC-18	AP		78.5		40.0			1.8	3.8	23.9			5.1 4.7 3.7 4.2 3.4		29.8	7.1 . 3	48	11	.49
C18-26	A12		75.6	9.0	15.4		. Z	. 8	2.0 1.5 1.0 .5	22.0	50.7	4.3	4.7		24.9	73.6	-	9	. 38
C36-48	CIC	٨	81.1	7.4	11.5		• 2	. 4	1.5	20.9	58.C	3.7	3.7		23.0	8C-1		8	.38
C48-66	CZ		84.2	8.2	7.6		Ç	• 2	1.0	15.0	68.C	4.0	4.2		16.2	85.7		7	.36
C66-81 C81-51	C3 C4		9C.7 84.9	10-4	4.7		1.1	1.5	-6	11.3	70.4	5.4	5.0		14-5	86.7		5	.47
041-107			5.0	37.2	57.8		.i	.4	. 4	1-1	3.C	1.1	36.0		2.0	4.9		56	
107-127			2.3	56.8	40.9		. 2	.3	. 3	.8	• 7	. 6	96.C		1.6	2.0		39	
127-152	2C7		1.9	38.C	6C.1	16.1	• 2	• 2	• 2	• 6	.7	• 3	37.7	22.4	1.2	1.3	30	50	- 40
CEPTH 4	(PARTI	CLE SI	ZE ANA	LYSIS	, мм,	38, 38	1, 3B2) (80	LK DEN	SITY) (hA1	ER CC	NTENT-) CARB	CNATE	1PH	
	ACT.	(- WE	IGHT -) 4AID	4AIH	401	4810	4810	. 482	4C1		6E1B	3ALA	8C 1A	8C1E
	9	75	15-20	20-5	5-2	- 674	PCT	RAR	DRY	CULE	BAR	BAR	BAR	CPZ		2	.002	H2G	CACL
CM	PCT	PĆT	(PCT I	LT 75) LT20	G/CC	G/CC		PCT	PCT	482 15- BAR PCT	GM		PCT	PC T		
COC-18	10	0	0	TP	TP	36	TR	1.54	1.56	.004		17.2	5.8	-18		11	6	8-5	
C36-48	TR	č	ă	Ĉ	TR	25	ĪR	1.6CA					6.2 5.8 4.4	•••		12	4	8.5	
C48-66	TR	ē	ō	č	TR	3 C	TR	1.608	1.62	.004	17.5		2.7	-24		13	1	8.5	
C66-81	1 R	c	C	C	IR	26	TR	1.60A					1.5			10	1 TR TR 2 2	8.2	
C81-51	IR	Ç	0	TR	TR	34	TR	1.568	1.47	.058	21.7	34 4	2.2	. 18		14	1 K	8.2 7.9	
167-167	TR	č	č	'C	TR	58	TR	1.20A		.030		,,,,	18.0	• • •		îż	2	8.C	
COC-18 018-36 C36-48 C48-66 C66-81 C81-51 C91-1C7 1C7-127	T.R	ŏ	ŏ	o	TR	99	ŤR	1.30		.030		36.1	24.0	.16		13	2	7.8	
DEPTH (CRGANI	C MAT1	TER)	6C2A	6514	6NZE	604C	6P2A	6024		6H1A	6G10	: 5A3A	5 A 6 A	8D2	803	5F	5C 3	
	ORGN	NITG		EXT	TOTL	CA	MG	NA	K	SUM	BACL	KGL	EXTB	NHAC	NHAC	CA	SAI	ACTY	NHAC
C#	CARE	PCT		FE PCT	PCT	(ME	2 / 10	0 G) CLĀY	MG	PCT		PCT
COC-18 C18-36 C36-48 C48-66	1.330	.127	10				3.4	.2	.3					10.7 6.4					
C34-48	.19	.022	, 10				5.2	-4	.2					5.2					
C48-66	.ii		•				4.3	. 8	.2					3.4	- 49				
C06_C1								1.0	**					2.5					
C81-51	.C7						7.8							3.3	.66 .51				
C91-1C7 107-127							26-1	6.5	1.2					28.7					
127-152	- 19						3C+1	7.0	1.2					28.9	.5C				
DEPTH		ATED F	PASTE)	NΑ	N A	SALT	GYP	(SATUR	ATION	EXTRAC	T 8A1-)	ATTERE	BERG
	8E1	8616	8A H2O	5D2	5E	8D5	6F1A	BAIA	6N1B	601B	6P1A	6C1A	611A	6J1A	6K 1A	6L1A	6MIA	4F1	4F2
	REST CHM-	PH	HZO	£ 2h	SAR	SOLL		EÇ MMHOS/	LA	MG	N A	ĸ	CO3	HLC3	U.L.	504	NL3	LMIT	
CF	CH		PCT	PCT		SCLL PPM	PC T	CM				- MFC	/ LITE	R				PCT	
CCC-18						 3&C		1 80											
C18-36 C36-48 C48-66 C66-81	1500	7.4	32.6			366		1.00											
C81-51	37C	8.2	24.0 85.2	30		24CC		2-60			51.7 37.5								
C91-107	27C	7.9	85.2	11		56CC		8.42			37.5								
107-127																			
151-136																			
								+											

CLAY MINERALCGY (7A2C).

CCC-10 MIL MIL KKI.

127-152 MI4 MI3 KK3.

CCMMENTS - CLAYS IN AIP PCCRLY ORDEREC, BY INFERENCE CONTAIN CONSIDERABLE AMORPHOUS MATERIAL. CLAYS CF THE 2CT ARE

BELL CREEREC.

RELATIVE AMOUNTS - (X-RAY) 5 = COMINANT 4 = ABUNDANT 3 = MODERATE 2 = SMALL 1 = TRACE.

MINERAL CCCE - MI = MCNIMGRILLONITE MI = MICA KK = KACLINITE

(A) ESTIMATEC.

(B) 1/10-BAR, METHOC 4A1G.

(C) 6 KG OF CARBON PER SQ METER TO A DEPTH OF 1 METER, METHOD 6A.

soli classification: Aeric Calciaquoll; coarse-loamy over clayey, frigid. Series: Not designated.

Pedon No.: S67MN-84-1.

Area: Wilkin County, Minnesota.

Location: NEINE sec. 19, T. 132 N., R. 45 W. (Foxhome Twp.); 50 feet south and 350 feet west of the

third powerline pole south of the northeast corner of section 19,

Climate Some characteristics of temperature in degrees P, are: annual normal - 45, winter normal - 13, summer normal - 70; some characteristics of precipitation in inches are: mean annual - 21,

May to September - 14, mean annual snowfall - 40,

Vegetation: Recently plowed field.

Parent material: Moderately shallow, calcareous, losmy and sandy glacio-lacustrine sediments over

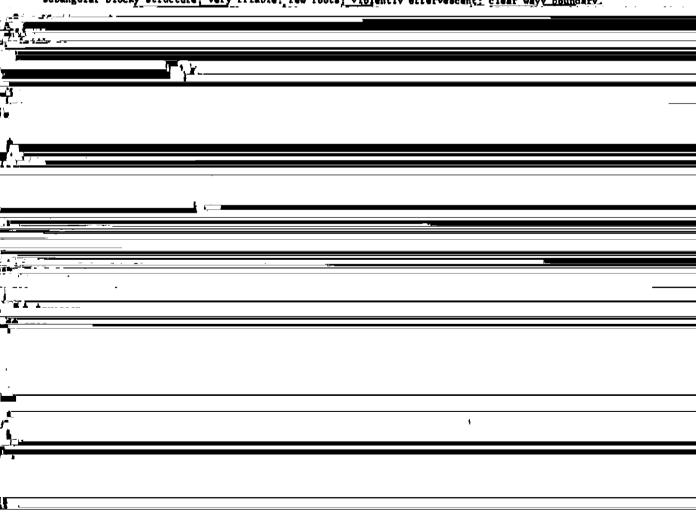
calcareous clavey lacustrine sediments.

Physiography: Lake Agassis plain; sample site is located between the Campbell and the Tintah beaches. Topography: Sample site occurs near crest of about a 10-acre elongated knoll. The side slopes are about 1 percent. This area slopes to the west at about 6 feet per mile.

Drainage: About somewhat poorly drained.

Erosion: None to slight, although farmer says there is a problem with blowing sand.

Permeability: Moderately rapid in the upper part, slow in the lower part.


Sampled by: R. H. Jordan, G. S. Holmgren, and H. R. Finney on October 18, 1967.

Described by: H. R. Finney.

67L577 0 to 18 cm. (0 to 7 inches) Black (10YR 2/1) heavy fine sandy loam; weak medium subangular blocky structure parting to weak fine and very fine granular; very friable; roots plentiful; strongly effervescent; abrupt smooth boundary.

Al2ca 67L578 18 to 36 cm (7 to 14 inches) Very dark gray (10YR 3/1) fine sandy loam; weak medium subangular blocky structure; very friable; few roots; violently effervescent; gradual smooth boundary.

Clca 67L579 36 to 48 cm (14 to 19 inches) Dark gray (10YR 4/1) fine sandy loam; weak fine and medium subangular blocky structure; very friable: few roots; violently effervescent; clear wayy boundary.

COUNTY - - - WILKIN

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SCIL SURVEY LABORATORY LINGOLN, NEBRASKA

SULL NC - - - - - 567MN-84-2 GENERAL METHCCS- - -14.1218.241.28

SAMPLE NOS. 671593-671601

FEBRUARY 1977

														_					
DEPTH	HCRI	ZEN											, 3Al,						1 RATIO
						FINE	(SAND -)	(-SILT-) FAML	INTR	FINE	NON-	801
			SAND	SILT	CLAY	CLAY	VCOS	CORS	MEDS	FNES	VFNS	COST	I FNSI	VFSt	TFXT	11		. C03-	
			2-	.C5-	LT	LT	2-	1-	.5-	.25-	-10-	-05	•02	.005	- SAND	.2-	TO		BAR
			-05	-0C2	-002	-CCC2	! 1	.5	• 25	-10	.05	.02	.02 .002	.002	21	.02	CLAY		TO
CP			(PC1	T LT 21	*M) PCT	PCT	CLAY
COC-25	AP				11.0		-6	2.7	3.7		48.5	4.5	6.6		28.9	71.2		11	- 65
C25-43	DEA				14.6		6	2.2	2.1		51.C	3.7	7 6.5		24.1	71.3		9	.44
C43-61 C61-74	C 1 G		77.7 87.2	6.9	14.C 5.9		2.5	4.3	1.7 2.2		51.5 60.3	3.1	4.0		26.2	74.2		8	.39
C74-86	C 3 G			11.8	7.7		4.0	10.3	4.7	10.3		3.9			20.7	80.9		6	-44
C86-51	C46			12.8	11.5		13.4	22.3	11.3	6.6	22.0	3.6			52 7	64.1 29.9			.36 .34
C91-112					42.4			.,7		1.3	1.6				2.8			7 12 38	.43
112-142							•••	• •		•••		•	. ,						• • • •
142-165			2.5	43.7	53.8		.2	. 3	. 3	.9	.7	1.9	42.8		1.7	2.1		53	.40
																			• • •
CEPTH	(PART I	CLE S	IZE ANA	TA212	, PM,	3B, 3B1	. 382) (Bu	LK DENS	ITY)(ER CCI	NTENT-) CARB	ONATE	(PI	H)
														4C1		6E 1 B	3Al A	8C 1 A	8 C 1 E
			75-20	20-5	5-2					COLE	1/10			WRC		ĻŤ	LŤ	1/1	1/2
	2	75					PÇT		CRY		BAR	BAR		CM/		2	.002	8C1A 1/1 H2C	CACL
C*	PCT	PCI	(PLI	LI 15	;	£120	6/66			PCT	PÇT		CM		PCT	PCT		
COC-25	To	Ç	Ç .	r	TR	32	70	1.51		.011			7.2						
C25-43		ò	ŏ.	č	TR	35	ŤŘ	1.50	1.53	.007		13.2		-16		11	4	8.0	
C43-61	TR	č	ŏ	č	ÍR	21	TR	1.52	1.55	.007		13.5		.12		14	6	8.1	
C61-74	TR	č	č	č	TR	25	TR	1.60A					2.6	• • • •		ŝ			
C74-86	1	· Č	ŏ	č	2	32	2	1.65B	1.68	-006	13.9		2.4	.19		13			
C#6-91	10	Č	C	5	11	27	16	1.50A					4.6			15			
C91-112	TR	0	C	C	TR	56	TR	1.28	1.42	.035		30.6	18.1	-16		19	4	6.1	
112-142		C	00000000	C	ŤR		ŤR						18.9			18		7.9	
142-165	,TR	٥	0	TR	TP	98	TR	1.26	1.50	-060		37.3	21.4	- 20		15	1	7.8	
DEPTH (ODCAL I	C MAT	TCO \	TACN	BHUC	/Ev	TDACT	AD. C. D	1566 60	1641	ACTV		1547	EYCU1	DATIO	DATIC		IBASE	
DEFIF (5A3A			8D3		503	
	CRGN	NITE	•/ "	EXT	TOTL		NG	NA	K	SUM	BACL	KCI	FYTR	NEAC			SAT	EXTB	
	CARE			FE		•-			.,		TEA		ACTY			۲o	NHAC		MAG
CP.	PCT	PCT		PCT	PCT	(MEC								PCT	PCT	PCT
CCC-25	1.920	.17	6 11				5.3	. 8	.2					13.9					
C25-43	.64	-C6						1.0						6.7					
C43-61	.37	.03	99				4.1							5.0					
C61-74	.11						3.6		-1					3.6					
C74-86	. (4						6.3		-1					4.3					
C86-51	.c7						7.9							5.9					
C91-112							25.3	6.2	.7					22.4	.53				
112-142							24.8	4.4	1.0					25.8	.48				
142-165	-13						£ 4 • 0	7.4	***					c 7 4 8	. 70				
CEPTH	(SATUR	ATEC	PASTE)	NA	NΑ	SALT	GYP	(SATURA	TICN	EXTRAC1	r eal-)	ATTERE	BERG
				5C2	5 E	805	6FlA						611A					4F1	4F2
	REST			ESP	SAR	TOTL		EC					CC3					LQID	PLST
	CHK-					SOLL		MHCS/	_									LMIT	INDX
Ć۲	CM			PCT			PCT						/ LITER					PCT	
COC-25	200						TH												
C25-43	180	1.4	36.4			1200	16	4.37											
C43-61																			
C61-74														•					
C74-86																			
C86-51	540	7.5	21.1	20		1800		10.7			48.5								
(51-112			68.3			54CC	2.C	10.1			44.3								
					-						.,							,	
112-142	_				-						.,,,,							,	

⁽A) ESTIMATEC.
(B) 1/1C-BAR, METHOD 4A1G.
(C) 11 KG CF CARBON PER SQ METER TO A CEPTH CF 1 METER, METHOD 6A.

Series: Not designated. Pedon No.: S67MN-84-2.

Area: Wilkin County, Minnesota,

Location: SEINEINE sec. 19, T. 132 N., R. 45 W. (Foxhome Twp.); 180 feet south and 110 feet west of the

third powerline pole south of northeast corner of section 19,

Climate: Some characteristics of temperature in degrees F. are: annual normal - 43, winter normal - 13, summer normal - 70; some characteristics of precipitation in inches are: mean annual - 21,

May to September - 14, mean annual snowfall - 40,

Vegetation: Recently plowed field; native vegetation was species of the tall prairie plant formation.

Parent material: Moderately shallow, calcareous, loamy and sandy glacio-lacustrine sediments over calcareous, clayer, lacustrine sediments.

Physiography: Lake Agassiz plain. Topography: Slope at site is level.

Drainage: Poorly drained.

Erosion: None.

Permeability: Moderate in upper part, slow in underlying material.

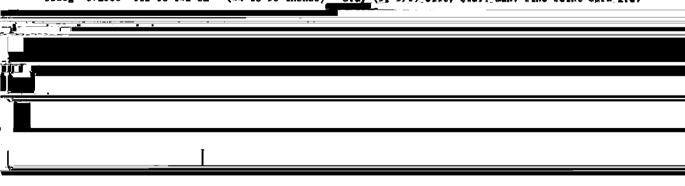
Sampled by: R. H. Jordan, G. S. Holmgren, R. A. Erickson, and H. R. Finney on October 19, 1967.

Described by: H. R. Finney.

Ap 67L593 0 to 25 cm (0 to 10 inches) Black (10YR 2/1) very fine sandy loam; weak fine subangular blocky structure parting to moderate fine and very fine granular structure; very friable; plentiful roots; strongly effervescent; abrupt smooth boundary.

A3ca 67L594 25 to 43 cm. (10 to 17 inches) Mixed very dark gray (10YR 3/1) and dark gray (10YR 4/1) very fine sandy loam; very dark gray (10YR 3/1) rubbed; weak fine subangular blocky; very friable; few roots; about 2 percent soft white limy segregations 1.0 to 2.0 mm in diameter; strongly effervescent; gradual wavy boundary.

Cigca 67L595 43 to 61 cm (17 to 24 inches) Gray and grayish brown (2.5Y 5/1 and 2.5Y 6/1) very fine sandy loam; weak medium subangular blocky structure; very friable; few roots; violently effervescent; clear wavy boundary.


C2gca 67L596 61 to 74 cm (24 to 29 inches) Pale olive (5Y 6/3) loamy very fine sand; common medium distinct dark gray (5Y 4/1) mottles and streaks; weak medium subangular blocky structure; very friable; few roots; violently effervescent; clear wavy boundary.

C3g 67L597 74 to 86 cm (29 to 34 inches) Light olive gray (5Y 6/2) loamy fine sand; common medium faint olive (5Y 5/3) and few medium prominent yellowish brown (10YR 5/6) mottles; massive; very friable; about 5 percent very coarse sand and very fine gravel; slightly effervescent; clear wavy boundary.

C4g 671598 86 to 91 cm (34 to 36 inches) Yellowish red (5YR 5/6) gravelly coarse sandy loam; massive; friable; horizon is discontinuous occupying about 60 percent of exposed faces; about 20 percent gravel, mostly less than 5 mm in diameter; slightly effervescent; abrupt smooth boundary.

IIC5g 67L599 91 to 112 cm (36 to 44 inches) Gray (5Y 5/1) silty clay; many fine distinct olive brown (2.5Y 4/4) mottles; moderate very fine angular blocky structure; friable; about 5 percent dark reddish brown (5YR 5/4) vertical pipestems 0.5 to 1.0 cm in diameter; about 2 percent soft whitish lime concretions 0.2 to 0.5 cm in diameter; strongly effervescent; clear smooth boundary.

IIC6g 67L600 112 to 142 cm (44 to 56 inches) Gray (5Y 5/1) silty clay: many fine faint dark gray

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NC - - - - - 567MN-84-4

COUNTY - - - WILKIN

GENERAL METHODS- - -14,1818,241.28

SAMPLE NOS. 67L586-67L592

FEBRUARY 1977

HCPIZ	CN	(
																		8 C 1
																		15-
						_											CLAI	TC
						· · ·		- PCT	LT 2*	/						PCT	PCT	
		79.8	10.5	9.7		.3	1.6	3.0									10	.6
		80.9				. 3	1.1	2.2	35.0	42.3	3.2	5.3		38.6	74.8		9	. 3
CICA		83.8	7.8	8.4		. 2	.7	2.C	38.9	42.1				41.7	78.3		8	. 3
C 2				8.0		.2	.,7							27.3	79.2		-	
						• 1	6											
							1.0											.4
5C # C		10.9	69.1	24.0		1.3	1.4	1.4	3.1	3.1	3.1	01.4		1.0	7.1		24	• • •
PARTIC	1 E 5	IZE ANA	LYSIS	. PM. 3	B. 381	382												
VCL. (- WEI	IGHT -			4AID	4A1H	401	481C	481C	482	401		6E1B	3 A 1 A	8C1A	8C1
GT	GŦ	75-20	20-5	5+2									WRC		ĻT	LŤ		1/2
										BAR			CF/		2	-002	H2C	CAC
PCT	PCT)	PCTL	.T 75 -)	L 720	G/CC						CP 			PC 1		
TR	¢	Ċ	c	TR	33						14.6		-12			TŖ	7.6	
								1.24	-009	14.1			•23		4	TÕ		
								1.62	-006	15.2			.20		11	1		
											25.2		.11		19	ž	8.0	
												19.2					7.9	
TR			TR	TR		TR	1.29	1.38	.023		36.7	14.0	.29		17	TR	8.0	
00 44 10			1864	0k05		TRACT		SES 58										SAT
										6HIA					803	5F	5C 3	5C 1
			EXT						SUM						CA	SAT	EXTB	NHA
CARE			FE									ACTY						
PCT	PCT		PCT	PCT ((MEQ	/ 100	G		·	1	CLAY	MG.			PCT
1.540						3.1	. 2	. 3					14.3	1.43				
						21.3	6.0	• '					4404	• • • •				
.11						20.4	5.6	•6					16.5	.69				
											*****						ATTERN	
CATIDA	TEC !	PASTE	NΔ	NΑ	SALT	4 Y P										,	# 1 1 E K B	
						4 5 7 4	2614	4 N 1 G	4010	ADIA	4014	411A	A 11A	AK3A	A1 1A	ANIA	AFI	4F2
8E1 8		8.4	502	5E	8C5			6NIB	6018	6PlA	691 A		6J1A	6K1A	6L 1A	AIMA	4F1	
	AFCACACE CONTRACTOR CO	#3C# C1C# C2 2C3G 2C4G 2C4G 2C5G 2C5G 2C5G 2C5G 2C5G 2C5G 2C5G 2C5	SAND 205 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (05 (SAND SILT 20505 .CC2 (AF 79.8 1C.9 A2CB 8C.9 8.5 C1CA 83.8 7.8 C2 8C.7 11.3 2C2G 7.0 44.9 2C4G 6.0 48.4 2C5G 1C.9 65.1 PARTICLE SIZE ANALYSIS. VCL. (SAND SILT CLAY 205+ LT .05 .CC2 .CG2 (AF .79.8 1C.5 9.7 A3CA 8C.9 8.5 1C.6 C1CA 83.8 7.8 8.4 C2 8C.7 11.3 8.0 2C.2G 7.0 44.9 48.1 2C.4G 6.0 48.4 45.6 2C.5G 1C.9 65.1 24.C PARTICLE SIZE ANALYSIS. PM., VCL. (SAND SILT CLAY CLAY 205+ LT LT .05 .CC2 .CC2 .CC2 (SAND SILT CLAY CLAY VCOS 205- LT LT 205 .CC2 .CC2 .CC2 1 [SAND SILT CLAY CLAY VCOS CERS 205+ LT LT 2- 105 .CC2 .CC2 .CC2 1 .5 (SAND SILT CLAY CLAY VCOS CERS MEDS 205+ LT LT 2- 1505 .CC2 .CC2 .CCC2 1 .5 .25 AFF 79.8 1C.5 9.7 .3 1.6 3.0 A3C0 8C.9 8.5 1C.6 .3 1.1 2.2 C1CA 83.8 7.8 8.4 .2 .7 2.6 C2 8C.7 11.3 8.0 .2 .7 2.0 2C.2G 7.0 44.9 48.1 .1 .6 .7 2C.2G 6.0 48.4 45.6 .5 1.0 1.2 2C.2G 6.0 48.4 45.6 .5 1.0 1.2 2C.2G 1C.9 65.1 24.C 1.3 1.4 1.4 PARTICLE SIZE ANALYSIS. MM, 3B, 381, 382)(BULK CENS VCL. (FINE (SAND SAND SAND SILT CLAY CLAY VCOS CERS MEDS FNES 205+ LT LT 2- 152505 .CC2 .CC2 .CC2 1 .5 .25 .10 PCT LT 2M	SAND SILT CLAY CLAY VCOS CCRS MEDS FNES VFNS 205- LT LT 2- 15251005 .CC2 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 .CC2 1 .5 .25 .10 .05 .CC2 .CC2 .CC2 .CC2 1 .5 .25 .CC2 .CC2 .CC2 .CC2 .CC2 .CC2 .C	SAND SILT CLAY CLAY VCOS CCRS MEDS FNES VFNS COSI 205- LT LT 2- 15251005 .05 .CC2 .CC2 .CCC2 1 .5 .25 .10 .05 .02 [SAND SILT CLAY CLAY VCOS CCRS MEDS FNES VFNS CCS1 FNSI 205+ LT LT 2- 15251005 .02 .05 .0C2 .0C2 .CCC2 1 .5 .25 .10 .05 .02 .002 .05 .CC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .07 .CC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .08 .CC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .09 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .09 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .09 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .00 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .00 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .00 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .00 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .00 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .00 .CCC2 .CCC2 1 .5 .25 .10 .05 .02 .002 .00 .CCC2 .CCC2 1 .5 .25 .10 .05 .00 .002 .CCC2 .CCC2 1 .5 .2 .1 .2 .2 .35 .0 .42 .2 .3 .2 .5 .3 .C1CA 83.8 7.8 8.4 .2 .7 .2 .C 38.9 .42 .1 .3 .4 .4 .4 .CC	SAND SILY CLAY CLAY VCOS CERS MEDS FNES VFNS COSI FASI VFSI 205- LT LT 2- 15251005 .02 .00505 .002 .002 .002 .002 .002 .002 AFF	FIRE (SAND	Fire SAND SILT FARL INTREST SAND SILT CLAY VOOS CGRS MEDS FRES VFNS COS: NSI VFS! TEXT II 2 - 1 - 5 - 25 - 10 - 05 .02 .003 - SAND .2 - 05 .02 .05 .02 .002 .002 .002 .002 .002	SAND SILT CLAY CLOS CERS MEDS FMES FMS CCS1 FMS COS1 FMS COS1 FMS LYST IEXT II CLAY CLOS CERS MEDS FMES FMS CCS1 FMS COS1 FMS COS1 FMS COS1 FMS COS1 FMS COS1 FMS COS1 FMS COS1 FMS COS1 FMS CMS FMS COS1 FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS CMS FMS FMS FMS FMS FMS FMS FMS FMS FMS F	FIRE (SAND) 1 - SILT) FAML INTR FINE NON- SAND SILT CLAY CLAY VOS CERS MEDS FNES VFNS COSI FNSI VFSI TEXT II CLAY CO3- 205 - LT LT 2 - 15251005 .02 .002 .002 .2 - TO CLAY

C#	C#		PCT	PCT	PPP PCT	CM	(MEC	/ LI	IER -	 . <u>.</u>	- ·-) PCT	
CCC+25 C25-46 C46-61 C61-86 C86-107 1C7-142 142-165	270	7.9	72.1	14	48CC	8.42		31	6.7								

⁽A) 1/1C-PAR. METHOD 4A1G.
(B) ESTIMATEC.
(C) 8 KG CF CARBON PER SQ METER TO A DEPTH CF 1 METER, METHOD 6A.

Soil classification: Aeric Calciaquoll; coarse-loamy over clayey, frigid

Series: Not designated. Pedon No.: S67MN-84-4.

Area: Wilkin County, Minnesota

Location: NW\nR\nE\ne\ sec. 27, T. 131 N., R. 45 W. (Bradford Twp.); about 1,100 feet west and 360 feet south of the northeast corner of section 27.

Climate: Some characteristics of temperature in degrees F. are: annual normal - 43, winter normal - 13, summer normal - 70; some characteristics of precipitation in inches are: mean annual - 21, May to September - 14, mean annual snowfall - 40.

Vegetation: Recently plowed field; native vegetation was species associated with tall prairie plant formation.

Parent material: Moderately shallow, calcareous, loamy and sandy glacio-lacustrine sediments over grayish, calcareous, clayey lacustrine sediments.

Physiography: Lake Agassiz plain; site occurs in immediate vicinity of the very weakly expressed Tintah beach ridge.

Topography: Site occurs at crest of an irregular shaped knoll; side slopes are about ½ percent. Drainage: About somewhat poor or moderately well.

Erosion: None to slight.

Permeability: Moderately rapid in the upper part, slow in the lower part.

Sampled by: R. H. Jordan, G. S. Holmgren, R. A. Erickson, and H. R. Finney on October 19, 1967. Described by: H. R. Finney.

Ap 67L586 0 to 25 cm (0 to 10 inches) Black (10YR 2/1) fine sandy loam; weak very fine and fine lar lar structure; very friable; abundant roots; strongly effervescent; abrupt smooth boundary.

A3ca 67L587 25 to 46 cm. (10 to 18 inches) Very dark gray (10YR 3/1) grading to dark grayish brown (10YR 4/2) in the lower part, fine sandy loam; weak fine subangular structure; very friable; plentiful roots; violently effervescent; gradual smooth boundary.

Clca 67L588 46 to 61 cm. (18 to 24 inches) Dark grayish brown (10YR 4/2) light fine andy loam; weak fine and medium subangular structure; very friable; few roots; violently effervescent; gradual wavy boundary.

C2 67L589 61 to 86 cm (24 to 34 inches) Light yellowish brown (2.5Y 6/4) loamy fine sand; common fine faint light brownish gray (2.5Y 6/2) and few fine faint yellowish brown (10YR 5/6) mottles; weak fine and medium subangular blocky structure; very friable; few roots; few fine soft black concretions 0.5 to 2.0 mm in diameter; slightly effervescent; abrupt smooth boundary.

IIC3g 67L590 86 to 107 cm (34 to 42 inches) Light olive gray (5Y 6/2) silty clay: common fine

friable; few roots; few fine soft black concretions 0.5 to 2.0 mm in diameter; strongly effervescent; gradual smooth boundary.

IIC4g 67L591 107 to 142 cm (42 to 56 inches) Light gray (5Y 6/1) silty clay; common fine distinct grayish brown (2.5Y 5/2) mottles; weak medium and coarse prismatic structure parting to weak fine and very fine angular blocky structure; firm; common fine prominent brown (7.5YR 4/4) soft concretions and vertical streaks; about 2 percent soft concretions of gypsum; strongly effervescent; diffuse smooth boundary.

SOIL CLASSIFICATION-TERRIC BORGSAPRIST LOAMY, MIXED, EURIC SERIES - - + - - + - HOT DESIGNATED

OHM-

CB

600

790

1100

CH

00-10 10-20 20-44

44-50

PCT

326

507

7.2 7.2 7.4

PCT

SOLU

PPE

8100

9100

4100

PCT

HNBOS/

CB

3.51

2.63

21.3 17.5

10.5

20.8

10.0

- mmg / Liter - - -

0 3.3

.6 .5 .3

.1

COUNTY - - - KITTSON

SOIL NO - - - - - 57289-35-1 GREERAL METHODS- - - 1A, 1812, 2A1, 2B MARCH 1977 SAMPLE NOS. 721604-721609 ---- PARTICLE SIZE AWALYSIS, LT 2MM, 3A1, 3A18 -------) RATIO MEDS PRES TEXT COSÍ .05-2-1-.5-.25-.10-.05 .02 .005 - SAND .002 2-.1 . Z-ŤO CLAY BAR - 02 .05 .0002 .002 .002 .002 CLAY TO CH - PCT LT 2ME 00-10 10-20 20-44 011 012 013 50-56 2C16CA 2C26 28.6 15,9 19.5 15.4 18.0 12.4 15.3 16.4 13,3 37.5 16.6 36.3 DEPTR (PARTICLE SIZE ABALISIS, 88. 32. 321. 3821.) BOLK DENSITY 1/- - - SATER CONTEMP- - - - CARRONARY. 61 75 75-20 20-5 5-2 LT 20-2 1/3-BAR OVEN COLE 1/10 BAR 1/3-BAE GT 15-SAU LT 2 LT .002 1/2 BAR CM/ CACL PCT (- - - PCT LT 75 -CH - - } LT20 e/cc G/CC PCT 00-10 10-20 .21 .48 .54 83 74 .58 .59 392 358 20-44 44-50 50-56 269 255 13 7 (- -EXTRACTABLE BASES 5B4A- -) ACTY 6H2F 6G2D 6P2B 6Q2B 6H1A (BASE SAT) SC3 SC1 EXTB WHAC DEPTH (ORGANIC MATTER) IRON PROS (CAT BECH) RATIO BATIC 6N2T 602D 6P2B 602B CA BG NA K SUB 6C2B 6G1E 5A3A RCL EXTB 8D1 WHAC 6D3 CA 64 1A 6R1A 516A 571 ORGE BACL WHAC SAT MHAC PITE CARB EXTB - MEQ / 100 G- - - ---) CLAY CH PCT PCT PCT (- - - -PCT ĦG PCT PCT PCT 30.2 34.4 31.3 63.8 .4 .6 .3 00-10 37.6 1.2 .4 110.0 .3 98.9 95.6 107.0 10-20 20-44 45.3 34.6 145.0 44-50 50-56 56-110 62.1 17.8 (SATURATED PASTE) H.A SALT (-----) ATTERBERG 8A1A 6818 6018 6P18 821 8C1B Яз 502 **马**尼 8D5 6P1A 6Q18 K 611A C03 6J1A HCO3 6K1A 6L1A 681A 471 472 REST B2C TOTL ÇA ĦG NA. CL LQID PLST BSP 504 **TO3**

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, HTSC MATIONAL SOIL SURVEY LABORATORY

LHIT INDX

- -) PCT

7.4 9.3 37.0 22.5

9

0

LINCOIN, MEBRASKA

Pedon classification: Terric Borosaprist; loany, mixed, swic-Soil: Series not designated.

Soil No.: 872MN-35-1.

Location: Kittson County, Minnesota; near northwest corner of NE & Sec. 30, T. 159 N., R. 45 W. About 48.7 deg. north latitude and 97.5 deg. west longitude.

Climate: Humid continental. Mean annual temperature is 38 deg. F.; mean summer temperature is 66 deg. F., and mean winter temperature is 6 deg. F. Mean annual precipitation is 20 inches; mean May through September precipitation is 14 inches; total annual snowfall is about 35 inches. Frost-free period is about 110 days.

Parent material: Organic soil material derived from herbaceous plants over loamy glacial till of the DesMoines lobe of the Late Wisconsin glaciation.

Physiography: Central lowlands; Lake Agassiz Flsin; area is nearly level and local relief is mostly less than 5 feet. Elevation is about 1,060 feet.

Vegetation: Mostly sedges and grasses.

Size of bog: About 100 acres. Microrelief: Very slight.

Distance to mineral land: About 600 feet.

Subsidence: Slight.

Depth to water table: Below 100 cm.

Described and sampled by: D. D. Barron, J. O. Nordin, R. S. Farnham, W. E. McKinzie, W. C. Lynn, and H. R. Firmey on July 27, 1972. Samples were obtained from a pit that was dug with a spade.

O to 10 cm Very dark brown (10YR 2/2, broken face) sapric material, black (10YR 2/1, rubbed); about 5 percent fiber, trace rubbed; weak very fine crumb structure; very friable; herbaceous fiber; about 25 percent mineral material; very slightly effervescent; clear smooth boundary.

a2 721605 10 to 20 cm Dark brown (7.5YR 3/2, broken face) fiber and black (10YR 2/1, broken face) matrix, sapric material, very dark brown (10YR 2/1, rubbed); about 60 percent fiber, about 10 percent rubbed; weak thin and medium platy structure; very friable; herbaceous fiber; about 20 percent mineral material; slightly effervescent; clear smooth boundary.

721606 20 to hit cm Black (N 2/, broken face and rubbed) sapric material; about 10 percent fiber, trace rubbed; weak fine platy structure; very friable; herbaceous fiber; about 60 percent mineral material; few fragments of smail shells; few limy masses; strongly effervescent; clear smooth boundary.

th to 50 cm Black (N 2/) mucky loam; weak medium and thick platy structure; slightly sticky; about 5 percent coarse fragments; very slightly effervescent; abrupt wavy boundary.

721608 50 to 56 cm Dark gray (2.5Y 4/1) loam; massive; slightly sticky; about 5 percent coarse fragments; violent effervescent; clear smooth boundary.

56 to 110 cm Light olive gray (5Y 6/2) loam; few fine distinct light olive brown (2.5Y 5/6) mottles; massive; slightly sticky; about 5 percent coarse fragments; strongly effervescent; gradual boundary.

110 to 120 cm Light olive brown (2.57 5/4) loam; many fine distinct grayish and few fine prominent reddish brown mottles; weak fine platy structure parting to weak fine angular blocky structure; slightly sticky; about 5 percent coarse fragments; strongly effervescent.

Remarks: Bulk samples were collected at depths of 0-10, 10-20, 20-44, 44-50, 50-56, and 56-110 cm. Samples primarily for determination of fiber were collected at depths of 0-10, 10-20, and 20-44 cm. Samples for determination of bulk density were collected at depths of 0-10, 10-20, 20-25, and 31-36 cm.

SOIL CLASSIFICATION-TYPIC BORDMENTST IQANY, MIXED. EUIC SERIES - - - - - - - NOT DESIGNATED

SOIL NO - - - - - 572MM-36-2

COUNTY - - - KOOCHICHING

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE. MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

GENERAL METHODS 1A,18	18.2A1.28
-----------------------	-----------

GENER AL										. 72L					ARCH 19	- •			
			\$AND 2- .05	SILT .05-	CLAY LT .002	FINE CLAY LT	vcos 2 1	CORS	SAND MEDS .5- .25	PNES .25- .10	VFNS .10- .05	COS1	1, 3A1, SILT- I FNSI .02 .002	3A1A, VFS1 .005	3A18 FAM TEX SANG 2-1	INTF	FINE CLAY TO CLAY	NON- CO3- CLAY	PATIO 801 15- BAR TO CLAY
010-000 000-025 025-040 040-150 150-155 155-160	01 0E 0I 0A 2A18																		
DEPTH (PARTI VOL. GT 2 PCT	GLE S GT 75 PCT	75-20	ALYSIS - WE 0 20-5	, MM, 1GHT - 5-2 LT 75	38, 38 LT .074	20-2 PCT J LT20	1/3- 6AR G/CC	LK DEN 4AIH OVEN DRY G/CC	SITY 401 COLE		447	-	AFF BAST.	_		BALA LT -002 PCT	(PI 8C1A 1/1 H2O	8C1E 1/2 GACL
010-000 000-025 025-040 040-150 150-155 155-160													97 97 87						
CH CH	PUI	PCI		IRON 6C2B EXT FE PCT	PHOS TOTL PCT	(E 6NZE CA	XTR ACT/ 6020 MG	APLE DI 6P2B NA	45FS 5 6928 K	SUM EXTE 0 / 100	ACTY 6H1A BACL TEA		ICAT SABA EXTB ACTY	:) CLAY	PATIO 8D3 CA TO MG	PCT	PCT	PÇ™
010-000 000-025 025-040 040-150 150-155 155-160	50.4 58.8					15.5 20.0 89.9	9.1 10.5 39.5	.5 .5 .6	2.5 2.0 .2	27.6 33.0 130.0			122 159 235			1.7	. 12	23 21	31
CN	SATUR 6E1 REST CHM- CM	ATED F BC 1B PH	PASTE) BA HZO PCT	NA 5D2 ESP PCT	NA SE		GYP (BALA EC MHDS/	6N1B CA	6018 MG	SATURA 6P1B NA	TION 6Q1B K	EXTRAC 611A CO3	7 8A1- 6J1A HCO3	6K1A CL	6L1A 504	6M1A NO3	ATTERE 4F1 LQID LMIT	FRG 4F2 PLST
010-000 000-025 025-040 040-150 150-155 155-140	7700 11600 8300	3.7	1610	 		1600 980 580		.15 .10 .11	.3		-1 TR -1	.6 .3 TR	0	0	0 0	0	ه ساندگ گامن به		
DEPTH		4 ST AT	F OF T	PCOMPC	W ITIM	A) DH	* * * * * * * * * * * * * * * * * * *	K DENI	0.001	CHEC		MATER	CONTER C 48: B 15- T BAR T PCI	WT 1	١				*****
010-000 000-025 025-040 040-150 150-155	19 10	94 76 92 84	75 52 55 20	10YR 7.5YR 10YR 7.5YR 7.5YR	9/2 5-5/4 7/4 5/4	3.3	6 2 .08 3 .06 5 .07			28 30 35			'5' 8' 71))			- 		

107 Pedon classification: Terric Borohemist; losmy, mixed, suic (see remarks). Soil: Series not designated. Soil No.: S72NN-36-2.
Location: Kocchiching County; Big Falls Experimental Forest; SE 1, SE 1, Sec. 14, T. 68 N., R. 27 W. About 48.5 deg. north latitude and about 94.2 deg. west longitude. Climate: Humid continental. Mean annual temperature is 37 deg. F.; mean summer temperature is 64 deg. F.; mean winter temperature is 8 deg. F. Mean annual precipitation is 24 inches; mean May through September precipitation is 16 inches; total annual snowfall is about 55 inches. Frost-free period is about 100 days. Parent material: Organic scil material derived from woody, herbaceous, and mossy plants over medium textured glacial lacustrine sediments. Physiography: Central lowlands; Agassiz Lacustrine Plain (Big Fork Valley). Area is nearly level and

CH	CONT	ONRP PCT	RUB PCT	SOLUBI		CACL		E/CC	VET	IDUE PCT	STAT PCT	REWT PCT	PAR PCT	CH/	KPA	·	
8-60 60-107	16 8	48 54	4 12	10YR	4/2 5/3	4.9 4.8	. 15			77	600				11.5		

(A) KPA = KILOPASCAL.

Pedon classification: Terric Borosaprist; loamy, mixed, euic.

Soil: Series not designated.

Soil No.: S73MN-69-3.

Location: St. Louis County, Minnesota; about 4-1/2 miles east of Meadowlands; about 100 feet north and 75 feet east of southwest corner of Sec. 16, T. 53 N., R. 18 W.; about 47.1 deg. north latitude and about 92.7 deg. west longitude.

Climate: Humid continental. Mean annual temperature is 39 deg.F.; mean summer temperature is 64 deg.F.; and mean winter temperature is 11 deg.F. Mean annual precipitation is 28 inches; May through September precipitation is 18 inches; mean annual snowfall is 60 inches. Frost-free period is 84 days.

Parent material: Organic soil material from woody and herbaceous plants over loam glacial lacustrine sediments of Late Wisconsin age.

Physiography: Central lowlands; Upham Lacustrine Plain. Site is about 4 miles from the border of the plain and the morainic uplands. The plain is level in this vicinity. Elevation is 1,290 feet. Slope of bog is about 8 feet per mile to the northwest.

Vegetation: White cedar forest with about 95 percent crown cover. The herbaceous layer and ground cover is rather sparse. Dominant plants are lingonberry, bog laurel, labrador tea, hypnum moss, lichens, and polytricum.

Size of bog: About 20 square miles.

Distance to adjacent mineral land: About 1 mile.

Microrelief: Hummocky with microrelief of about 20 inches.

Depth to water table: About 40 inches.

Subsidence: Slight; roadside ditch about 100 feet south of the site.

Observers: The nedon was described, samples collected, and shear strength measured on Tulv II. 1973.

by E. L. Bruns, J. H. Day, L. Dunnigan, R. S. Farnham, H. R. Finney, M. Levesque, W. C. Lynn, and W. E. McKinzie.Samples were obtained from a hand-dug pit and with a spade.

Oal 0 to 8 cm Black (10YR 2/1, broken face, rubbed, and pressed) sapric material; about 20 percent fiber. about 5 percent rubbed; weak fine granular structure; very friable. slightly sticky; woody fiber:

about 15 percent mineral material; clear smooth boundary.

Oa2 7316238 to 60 cm Black (10YR 2/L broken face) matrix and dark brown (7.5YR 3/2. broken face)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - S70MN-20-3

COUNTY - - - DODGE

GENERAL METHODS- - -14,1818,241,28

SAMPLE NOS. 7011079-7011088

DEPTH	HORI	 ZON	(
							(SAND -		1)(•	-TJIZ-		FAML	INTR	FINE	NON-	801
			2-		LT			1-		.25-	. 10-	.05	.02	*002	- SAND		TO	CD3-	15÷ Bar
CM			.05	.002	.002	.000	2 1	5	.25	.10	.05	.02	.002	+002	21	.02	CLAY	PCT	70
																	, rui		CLMI
000-22 022-31	AP Bl				27.0 28.4		.2 .3			5.3 3.9			33.4 34.9		12.5	29.7 29.0		27 28	.47
31-40	821		9.9	61.2	28.9	10.0	• 4	1.8		3.4	2.2	26.5	34.7		7.7	30.4	55	29	.43
040-58	822			46.7			1.6	4.3					24.8			32.6		26	.42
058-79 079-106	2823 2824			29.1 31.5						17.4			16.3 17.5		36.2 33.5			24 25	.38 .40
106-133	28251		44.1	30.8	25-1	10.8	3.3	6.8	7.4	15.4	11.2	13.7	17-1		32.9	33.1	43	25	.41
133-175 175-200				33.5 33.4		8.1 7.8	4.3 3.7			15.0			18.3 18.0		34.8 36.5	33.7 35.4	38 41	21 19	.43
200-270			51.3				4.4			17.7			17.0		39.5	36.4	35	16	. 45
				,							·								
DEPTH						38 - 38) (481C					CARB	ONATE 3Ala	(P)	8C1E
	GT.	GT	75-20	20-5	5-2	LT	20-2	1/3-	DVEN	COLE			15-	4C1 WRD		LT	LT	1/1	1/2
	2	75				.074	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	-002	H2B	CACL
CM	PC T	PU 1		- PC1	LI /2			 -	6/66		PCT	PCT	PCT				PCT		
000-22	TR	0	0	TR	TR	86	TR		1.64				12.8	-21				6.7	6.7
322-31 031-40	TR O	. 0	0	18	TR O	99	18	1.47		.027		28.7	12.0	•21 •23	2.3			5.3 4.9	5.0 4.5
040-58	1	ō	TR	1	ĭ	75	2	1.38		.029			11.0	.16	1.7			4.6	4.3
058-79 079-106		0	0	TR	1	58 61	1	1.50A 1.60A					9.2 9.8					4.7 5.1	4.2
106-133		ŏ	TŘ	1	2	61	ŝ	1.69	1.86	.033		16.9	10.4	-11	2.3	3 1		7.4	7.5
133-175 175-200		ų o	TR	1	2	59	. 3	1.85	1.93	.015		13.9	9.1 8.1	.09	2.8	3 9 11	0	7.9 8.0	7.6 7.7
200-270		õ	Ô	î	3	86 89 92 75 58 61 61 59 56	4	****	1.09	•••	20.7	13.0	7.3	•••		12		8.2	7.8
DEPTH (AL			RATIO				SAT)
	6A1A ORGN	6BlA NITS	C/N	6C2B EXT		6N2E Ca	602D MG		6Q2B K	SUM	6H1A Bacl	6G1E		5A6A NHAC	BD1 NHAC	8D3 CA	5F1 SAT	SC3 Extb	SG1 NHAC
	CARB	11173		FE						EXTB	TEA	EXT	ACTY		TO	TQ	NHAC	ACTY	
CM	PCT	PÇT		PCT		{ -					G						PÇT	PCT	PCT
000-22	2.530	.224	11	1.0		19.8	7.0	0.1		27.3	6.4			26.3		2.8	75	81	104
022-31 031-40		.094	8	1.1		11.7 11.2	4.3 3.6	0.2	0.4	16.6	9.2 10.8	0.4	25.8 26.2	20.2	0.71	2.7 3.1		64 59	82 75
040-58		.037	7	1.1 1.1 1.3		10.1	3.0	0.Z		13.7					0.69	3.4		58	75
058-79	0.15			1.6		7.0 8.7	2.3	0.2	0.3		6.3		16.1			3.0		61 71	77 88
										11.5	4.7	0.5	16.2		V. 73	3.8	66		
	0.11			1.5						16.2				13.0	0.52			**	
106-133 13 3- 175	0.11 0.07 0.03			1.5		13.40 15.70	2.3D	0.2 0.2	0.3 0.3	16.2 18.4				10.5	0.52			**	
106-133 133-175 1 75- 200	0.11 0.07 0.03 0.03			1.5 1.3 1.1 0.7		13.40 15.70 14.40	2.3D 2.2D 2.10	0.2 0.2 0.2	0.3 0.3 0.3	18.4 17.0				10.5 9.3	0.52 0.50 0.49		-	**	
106-133 133-175 175-200 200-270	0.11 0.07 0.03 0.03 0.02		•			13.40 15.70	2.3D 2.2D 2.10	0.2 0.2 0.2 0.2	0.3 0.3 0.3	18.4 17.0 16.3				10.5 9.3 7.8	0.52 0.50 0.49 0.48				
106-133 133-175 175-200 200-270	0.11 0.07 0.03 0.03 0.02					13.40 15.70 14.40 14.10	2.3D 2.2D 2.10 1.8D	0.2 0.2 0.2 0.2	0.3 0.3 0.3 0.2	18.4 17.0 16.3	SATURA	TION E	XTRACT	10.5 9.3 7.8	0.52 0.50 0.49 0.48			ATTERE	ERG
106-133 133-175 175-200 200-270	0.11 0.07 0.03 0.03 0.02 (SATUR/	ATED P BC1B	ASTE)	NA 502	NA SE	13.4D 15.7D 14.4D 14.1D SALT 8D5	2.3D 2.2D 2.10 1.8D	0.2 0.2 0.2 0.2	0.3 0.3 0.3 0.2	18.4 17.0 16.3	SATURA 6P18	TION E	XTRACT	10.5 9.3 7.8 8A1- 6J1A	0.52 0.50 0.49 0.48	 6L1A) 6M1A	ATTER8	ERG 4F2
106-133 133-175 175-200 200-270	0.11 0.07 0.03 0.03 0.02	ATED P BC1B	ASTE)	NA	NA	13.40 15.70 14.40 14.10	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2	0.3 0.3 0.3 0.2	18.4 17.0 16.3	SATURA 6P18	TION E	XTRACT	10.5 9.3 7.8 8A1- 6J1A	0.52 0.50 0.49 0.48	 6L1A) 6M1A	ATTERE	ERG 4F2 PLST
106-133 133-175 175-200 200-270 DEPTH	0.11 0.07 0.03 0.03 0.02 (SATUR/ 8E1 REST	ATED P BC1B PH	ASTE)	NA 502	NA SE	13.40 15.70 14.40 14.10 SALT 8D5 TOTL	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2 (8A1A EC	0.3 0.3 0.3 0.2 0.2 6N1B CA	18.4 17.0 16.3 601B MG	SATURA 6P18 NA	TION E 6018 K	XTRACT 611A CO3	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	6L1A 504) 6M1A NO3	ATTER8 4F1 LQID LMIT PCT	ERG 4F2 PLST INDX
106-133 133-175 175-200 200-270 DEPTH	0.11 0.07 0.03 0.03 0.02 (SATUR/ 8E1 REST DHM-	ATED P BC1B PH	ASTE) 8A H2Ü	NA 502 ESP	NA SE	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2 (8A1A EC	0.3 0.3 0.3 0.2 0.2 6N1B CA	18.4 17.0 16.3 601B MG	SATURA 6P18 NA	TION E 6018 K	XTRACT 611A CO3	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	6L1A 504) 6M1A NO3	ATTER8 4F1 LQID LMIT PCT	ERG 4F2 PLST INDX
106-133 133-175 175-200 200-270 DEPTH CM	0.11 0.07 0.03 0.03 0.02 (SATUR/ 8E1 REST DHM-	ATED P BC1B PH	ASTE) 8A H2Ü	NA 502 ESP	NA SE	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2 (8A1A EC	0.3 0.3 0.3 0.2 0.2 6N1B CA	18.4 17.0 16.3 601B MG	SATURA 6P18 NA	TION E 6018 K	XTRACT 611A CO3	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	6L1A 504) 6M1A NO3	ATTER8 4F1 LQID LMIT PCT	ERG 4F2 PLST INOX
106-133 133-175 175-200 200-270 DEPTH CM D00-22 022-31 031-40	0.11 0.07 0.03 0.03 0.02 (SATUR/ 8E1 REST DHM-	ATED P BC1B PH	ASTE) 8A H2Ü	NA 502 ESP	NA SE	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2 (8A1A EC	0.3 0.3 0.3 0.2 0.2 6N1B CA	18.4 17.0 16.3 601B MG	SATURA 6P18 NA	TION E 6018 K	XTRACT 611A CO3	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	6L1A 504) 6M1A NO3	ATTER8 4F1 LQID LMIT PCT	ERG 4F2 PLST INOX
106-133 133-175 175-200 200-270 DEPTH CM CM CM CM CM CM CM CM CM CM CM CM CM	0.11 0.07 0.03 0.03 0.02 (SATUR) 861 REST DHM-	ATED P BC1B PH	ASTE) 8A H2C PCT	NA 502 ESP PCT	NA SE	13-40 15-70 14-40 14-10 SALT 805 TOTL SOLU PPM	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2	0.3 0.3 0.3 0.2 0.2 6N1B	18.4 17.0 16.3 6018 MG	SATURA 6PlB NA	TION E 6018 K	XTRACT 611A CO3	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	6L1A 504) 6M1A NO3	ATTERB 4F1 LQID LMIT PCT	ERG 4F2 PLST INOX
106-133 133-175 175-200 200-270 DEPTH CM 000-22 022-31 031-40 040-58 070-106	0.11 0.07 0.03 0.03 0.02 (SATURI 861 REST DHM-	ATED P BC1B PH	ASTE) 8A H2C PCT	NA 502 ESP	NA SE	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2	0.3 0.3 0.3 0.2 0.2 6N1B CA	18.4 17.0 16.3 6018 MG	SATURA 6P1B NA	TION E 6018 K	XTRACT 611A CO3	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	6L1A 504) 6M1A NO3	ATTERB 4F1 LQID LMIT PCT	ERG 4F2 PLST INOX
106-133 133-175 175-200 200-270 200-270 200-270 200-270 200-270 200-28 2022-31 201-40 2040-58 2058-79 2079-106 106-133 133-175	0.11 0.03 0.03 0.02 (SATUR) 861 REST DHM-CM	ATED P BC1B PH	ASTE) 8A H2C PCT	NA 502 ESP PCT	NA SE	13-40 15-70 14-40 14-10 SALT 805 TOTL SOLU PPM	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2	0.3 0.3 0.3 0.2 0.2 6N1B	18.4 17.0 16.3 6018 MG	SATURA 6PlB NA	TION E 6018 K	XTRACT 611A CO3	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	6L1A 504) 6M1A NO3	ATTERB 4F1 LQID LWIT PCT 42E	ERG 4F2 PLST INOX
CM CM CM CM CM CM CM CM CM CM	0.11 0.03 0.03 0.02 (SATUR 8E1 REST DHM- CM	ATED P BC1B PH	ASTE) 8A H2C PCT	NA 502 ESP PCT	NA SE	13-40 15-70 14-40 14-10 SALT 805 TOTL SOLU PPM	2.3D 2.2D 2.1D 1.8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2	0.3 0.3 0.3 0.2 0.2 6N1B	18.4 17.0 16.3 6018 MG	SATURA 6PlB NA	TION E 6018 K	XTRACT 611A CO3	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	6L1A 504) 6M1A NO3	ATTERB 4F1 LQID LMIT PCT	ERG 4F2 PLST INOX
106-133 133-175 175-200 200-270 200-270 CM CM CM CM CM 202-31 231-40 240-58 258-79 279-106 106-133 133-175 175-200 200-270	0.11 0.03 0.03 0.02 (SATURN 8E1 REST DHM— CM	ATED P 8C18 PH 	ASTE) 8A H2O PCT	NA 502 ESP PCT	NA SE SAR	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU PPM	2-3D 2-1D 1-8D GYP 6F1A	0.2 0.2 0.2 0.2 0.2 0.2 8A1A EC MMHOS/ CM	0.3 0.3 0.3 0.2 0.2 6N1B CA	18.4 17.0 16.3 6018 MG	SATURA 6P18 NA 0-3	0-1	XTRACT 611A CO3 / LITER	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	61 1A S04) 6M1A NO3	ATTERB 4F1 LQ1D LHIT PCT 42E 38E	ERG 4F2 PLST INDX 16
106-133 133-175 175-200 200-270 200-270 CM 000-22 022-31 031-40 040-58 058-79 079-106 106-133 133-175 175-200 200-270	0.11 0.07 0.03 0.03 0.02 (SATURI 8E1 REST DHM— CM	ATED P 8C18 PH 	ASTE) 8A H2O PCT	NA 5D2 ESP PCT	NA SE SAR	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPH	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT	0.2 0.2 0.2 0.2 0.2 (BAIA EC MMHOS/ CM	0.3 0.3 0.3 0.2 6N1B CA	18.4 17.0 16.3 601B MG	SATURA 6P18 NA 0-3	0-1	XTRACT 611A CO3 / LITER	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	61 1A S04) 6M1A NO3	ATTERB 4F1 LQ1D LHIT PCT 42E 38E	ERG 4F2 PLST INDX 16
106-133 133-175 175-200 200-270 DEPTH CM CM CM 200-2-31 031-40 040-58 079-106 106-133 115-200 200-270	0.11 0.07 0.03 0.03 0.02 (SATUR, 8E1 REST DHM- CM	ATED P BC1B PH 4.8	PCT 36.5	NA 5D2 ESP PCT Z	NA SE SAR	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU PPH 40	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT	0.2 0.2 0.2 0.2 0.2 8A1A EC MMHOS/ CM	0.3 0.3 0.3 0.2 0.2 6N1B CA	18.4 17.0 16.3 601B MG	SATURA 6P18 NA 0.3	0.1	EXTRACT 611A CO3 LITER	10.5 9.3 7.8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 6KIA CL	61.1A SD4	6 M1A NO3	ATTERB 4F1 LQID LWIT PCT 42E 38E 29E	ERG 4F2 PLST INDX 16 17
CM CM CM CO CO CO CO CO CO CO	0.11 0.07 0.03 0.03 0.02 (SATURI 8E1 CM 5000	ATED P BC1B PH 4.8 INNESC MINESC	PCT 36.5	NA 502 ESP PCT 2	NA 5E SAK URAL E Y ANAL STION.	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU PPH 40	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT	0.2 0.2 0.2 0.2 0.2 8A1A EC MMHOS/ CM	0.3 0.3 0.3 0.2 0.2 6N1B CA	18.4 17.0 16.3 6018 MG 0.3	SATURA 6P1B NA 0.3 0.3	O-1	XTRACT 611A CO3 / LITER	10-5 9-3 7-8 8A1- 6J1A HC03	0.52 0.50 0.49 0.48 	6LIA SO4	6 CM DI	ATTER8 4F1 LQID LWIT PCT 42E 38E 29E	ERG 4F2 PLST INDX 16 17
CM CM CM CM CM CM CM CM CM CM	0.11 0.07 0.03 0.03 0.02 (SATUR 8E1 REST DHM- CM	ATED P BC1B PH 4.8 INNESC MINESC C-PERC	ASTE) 8A H2O PCT 36.5	NA 502 ESP PCT 2	NA SE SAR URAL E Y ANAL	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPH 40 A0	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT	0.2 0.2 0.2 0.2 0.2 (8A1A EC MMHOS/ CM 0.21	0.3 0.3 0.3 0.2 6NIB CA (18.4 17.0 16.3 6018 MG 0.3	SATURA 6P1B NA 0.3 0.3	O-1 TRATICO OBULK (KG) A	ATRACT 611A CO3 / LITER DN RESI DENSI 6 C4 U	10.5 9.3 7.8 8A1- 6J1A HC03 STANCE	0.52 0.50 0.49 0.48 6KIA CL	6t IA SD4 	6 M1A NO3	ATTER8 4F1 LQ1D LM1T PCT 426 386 296	ERG F2 PLST INOX 16 17
CM - 133 175 175 200 200 270 2	0.01 0.03 0.03 0.02 (SATUR) 8E1 REST CM 5000	ATED P BC1B PH 4.8 INNESC SNO 1	ASTE) 8A H20 PCT 36.5	NA 502 ESP PCT Z	NA SE SAR URAL EY ANAL'STIGN.	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPM 40 XPERIME YSIS. AVAIL	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT	0-2 0-2 0-2 0-2 0-2 0-2 0-21	0.3 0.3 0.3 0.2 6N1B CA	18.4 17.0 16.3 	O.3 IMATED. RO-PENETED ENTER	O-1 TRATICO BULK OKEO A GTH.	EXTRACT 611A CO3 LITER DN RESI C DENSI 6 CM U ND NOT	10-5 9-3 7-8 8A1- 6J1A HCO3 STANCE STANCE STANCE STANCE STANCE STANCE STANCE STANCE	0.52 0.50 0.49 0.48 6KIA CL	6LIA SU4 	6 CM DI ATED AT	ATTERB 4F1 LQID LMIT PCT 426 38E 29E A IS S 1/10- ER. U COMPR	ERG F2 PLST INDX 16 17 15 CLOWLY BAR, NITS
CM CM CM CM CM CM CM CM CM CM	0.01 0.03 0.03 0.03 0.02 (SATUR 861 REST OHM- CM	ATED P BC1B PH 4.8 INNESC MINESC SNO I	ASTE) 8A H2O PCT 36.5	NA 5D2 ESP PCT Z ICULTI X-RAS DIGE CTANT	NA SE SAR URAL E Y ANAL	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPM 40 XPERIME YSIS. AVAIL	2.3D 2.2D 2.1D 1.8D GYP 6F1A PCT	0-2 0-2 0-2 0-2 0-2 0-2 0-21	0.3 0.3 0.3 0.2 6NIB GA (18.4 17.0 16.3 6018 MG 0.3 0.3	SATURA 6P1B NA 0.3 0.3 IMATED. GO-PENET ISTANCE FORCE E STREN HOD 6N4	TRATICO BULK TRATICO BULK OF OA (KG) A GTH- RBON I C FOR	XTRACT 611A CO3 / LITER DN RESI DENSI 6 CH UND NOT NO NOT S 11 KC A AND CO A CO A CO A CO A CO A CO A CO A CO	STANCE TY CLC SING / ESTI	0.52 0.50 0.49 0.48 	66 1A SO4 	6 CM DI ATED AT ETROMET OF 1 M	ATTERB 4F1 LQID LMIT PCT 42E 38E 29E 29E	ERG FF2 PLST INDX 16 17 15 SLOWLY BAR, NITS
CM CM CM CM COO-22 CO-270 CM COO-22 CO-270 CM COO-22 CO-270 CM COO-22 CO-270 CO-270 CO-270 CO-270 CO-270 CO-270 ANALYSE: ST-PAUL PHORUS, PHORUS, PHORUS, DEPTH CM	0.01 0.03 0.03 0.02 (SATUR) 8E1 REST CM 5000	A TED P BC 1B PH 4.8 INNESC S-PERC S-PERC S-PERC S-PERC S-PERC	ASTE) 8A H2O PCT 36.5	NA 5D2 ESP PCT 2 2 ICULTI X-RAN DIGE CTANT ALOGY TE K	NA SE SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPM 40 XPERIME YSIS. AVAIL	2.3D 2.2D 2.1D 1.8D GYP 6F1A PCT	0.2 0.2 0.2 0.2 0.2 8A1A EC MMHOS/ CM 9.21	0.3 0.3 0.3 0.2 6NIB GA (18.4 17.0 16.3 6018 MG 0.3 0.3	SATURA 6P1B NA 0.3 0.3 IMATED. GO-PENET ISTANCE FORCE E STREN HOD 6N4	TRATICO BULK TRATICO BULK OF OA (KG) A GTH- RBON I C FOR	XTRACT 611A CO3 / LITER DN RESI DENSI 6 CH UND NOT NO NOT S 11 KC A AND CO A CO A CO A CO A CO A CO A CO A CO	STANCE TY CLC SING / ESTI	0.52 0.50 0.49 0.48 	66 1A SO4 	6 CM DI ATED AT	ATTERB 4F1 LQID LMIT PCT 42E 38E 29E 29E	ERG FF2 PLST INDX 16 17 15 SLOWLY BAR, NITS
106-133 1375-200 200-270 200-270 CM 000-22 022-31 031-40 040-58 058-79 079-106 106-133 133-175 175-200 200-270 ANALYSE: ST PHORUS, PHORUS, DEPTH	0.11 0.07 0.03 0.03 0.02 (SATURI 8E1 REST DHM- CM 5000 S BY M, NITRI(BRAY*	ATED P BC1B PH 4.8 INNESC C-PERC S NO 1 VERM C-PERC 20	ASTE) 8A HZO PCT 36.5	NA 502 ESP PCT Z ICULTI X-RA: DIGE CTANT TE K. 002 M	NA SE SAK SAK SAK SAK SAK SAK SAK SAK SAK SAK	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPH 40 AVAIL) UARTZ) UARTZ	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT TOTAL ABLE	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.21 0.21	0.3 0.3 0.3 0.2 6NIB GA (18.4 17.0 16.3 6018 MG 0.3 0.3	SATURA 6P1B NA 0.3 0.3 IMATED. GO-PENET ISTANCE FORCE E STREN HOD 6N4	TRATICO BULK TRATICO BULK OF OA (KG) A GTH- RBON I C FOR	XTRACT 611A CO3 / LITER DN RESI DENSI 6 CH UND NOT NO NOT S 11 KC A AND CO A CO A CO A CO A CO A CO A CO A CO	STANCE TY CLC SING / ESTI	0.52 0.50 0.49 0.48 	66 1A SO4 	6 CM DI ATED AT ETROMET OF 1 M	ATTERB 4F1 LQID LMIT PCT 42E 38E 29E 29E	ERG FF2 PLST INDX 16 17 15 SLOWLY BAR, NITS
CM CM CM COO-22 COC-31	0.11 0.07 0.03 0.03 0.02 (SATUR, 861 REST CHM-CM	A TED P BC1B PH 4.8 INNESC MINESC FRC FRC VERM 20 20	ASTE) 8A H2O PCT 36.5	NA 5D2 ESP PCT 2 2 11CULTI X-RAS CTANT TE K.	NA SE SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU PPM 40 XPERIME YSIS. AVAIL UARTZ	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT TOTAL ABLE (0.2 0.2 0.2 0.2 0.2 8A1A EC MHHOS/ CM 0.21	0.3 0.3 0.3 0.2 6NIB GA (18.4 17.0 16.3 6018 MG 0.3 0.3	SATURA 6P1B NA 0.3 0.3 IMATED. GO-PENET ISTANCE FORCE E STREN HOD 6N4	TRATICO BULK TRATICO BULK OF OA (KG) A GTH- RBON I C FOR	XTRACT 611A CO3 / LITER DN RESI DENSI 6 CH UND NOT NO NOT S 11 KC A AND CO A CO A CO A CO A CO A CO A CO A CO	STANCE TY CLC SING / ESTI	0.52 0.50 0.49 0.48 	66 1A SO4 	6 CM DI ATED AT ETROMET OF 1 M	ATTERB 4F1 LQID LMIT PCT 42E 38E 29E 29E	ERG FF2 PLST INDX 16 17 15 SLOWLY BAR, NITS
106-133 1375-200 200-270 200-270 200-270 200-270 202-31 201-40 2040-58 2058-79 2040-58 2058-79 2040-58 2058-79 2040-58 2040-58 2058-79 2040-58 2058-79 2040-58 2058-79	0.11 0.07 0.03 0.03 0.02 (SATUR) SET CM 5000 5000 SBY MI NITRIC BRAY**	A TED P BC1B PH 4.8 4.8 INNESC MINESC S NO 1 VERM 20 20 20 20 20 20 215	ASTE) 8A HZO PCT 36.5 TA AGP ALOGY HLURIC EXTRA MILLI IT LT 40 30 30 30	NA 5D2 ESP PCT 2 2 ICULT: X-RA': DIGE CTANT ALDGY M	NA SE SAK SAK SAK SAK SAK SAK SAK SAK SAK SAK	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPM 40 AVAIL) UARTZ) UARTZ) 0 5 5 5	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT TOTAL ABLE	0.2 0.2 0.2 0.2 0.2 0.2 8A1A EC MMH0S/ CM 0.21 0.21	0.3 0.3 0.3 0.2 6NIB GA (18.4 17.0 16.3 6018 MG 0.3 0.3	SATURA 6P1B NA 0.3 0.3 IMATED. GO-PENET ISTANCE FORCE E STREN HOD 6N4	TRATICO BULK TRATICO BULK OF OA (KG) A GTH- RBON I C FOR	XTRACT 611A CO3 / LITER DN RESI DENSI 6 CH UND NOT NO NOT S 11 KC A AND CO A CO A CO A CO A CO A CO A CO A CO	STANCE TY CLC SING / ESTI	0.52 0.50 0.49 0.48 	66 1A SO4 	6 CM DI ATED AT ETROMET OF 1 M	ATTERB 4F1 LQID LMIT PCT 42E 38E 29E 29E	ERG FF2 PLST INDX 16 17 15 SLOWLY BAR, NITS
106-133 1375-200 200-270 200-270 DEPTH CM 0000-22 022-31 031-40 040-58 079-10 106-133 133-175 175-200 200-270 ANALYSE: ST PAUL PHORUS, PHORUS, PHORUS, PHORUS, PHORUS, PHORUS, PHORUS, PHORUS, PHORUS, PHORUS, PHORUS,	0.11 0.07 0.03 0.03 0.02 (SATUR, 861 REST CHM-CM SBY M, NITRIC BRAY*	ATED P BC1B PH 4.8 4.8 INNESC MINER C-PRC 20 20 20 20 20 15	ASTE) 8A H20 PCT 36.5 TTA AGR ALOGY, HLURIO EXTRA MINER 11.1 TLT 40 30 30 40	NA 5D2 ESP PCT Z ICULTI X-RA DIGE CTANT ALOGY M	NA SE SAR SAR SE SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR	13.40 15.70 14.40 14.10 SALT 8D5 TOTL SOLU PPM 40 XPERIME YSIS. AVAIL UARTZ	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT TOTAL -ABLE 1354	0.2 0.2 0.2 0.2 0.2 0.2 8A1A EC MMHOS/ CM PHOS- PHOS- PHOS- 2 3 12 9 9	0.3 0.3 0.3 0.2 6NIB GA (18.4 17.0 16.3 6018 MG 0.3 0.3	SATURA 6P1B NA 0.3 0.3 IMATED. GO-PENET ISTANCE FORCE E STREN HOD 6N4	TRATICO BULK TRATICO BULK OF OA (KG) A GTH- RBON I C FOR	XTRACT 611A CO3 / LITER DN RESI DENSI 6 CH UND NOT NO NOT S 11 KC A AND CO A CO A CO A CO A CO A CO A CO A CO	STANCE TY CLC SING / ESTI	0.52 0.50 0.49 0.48 	66 1A SO4 	6 CM DI ATED AT ETROMET OF 1 M	ATTERB 4F1 LQID LMIT PCT 42E 38E 29E 29E	ERG FF2 PLST INDX 16 17 15 SLOWLY BAR, NITS
106-133 133-175 175-200 200-270 200-270 200-270 200-270 202-31 031-40 040-58 058-79 079-106 175-200 200-270 ANALYSE: ST PAUL PHORUS, DEPTH CM 000-22 022-31 031-40 040-58 058-79 079-106 079-106	0.11 0.07 0.03 0.03 0.02 (SATUR, 8E1 REST CHM-CM SOOO S BY MI NITRIE BRAY*: (A TED P BC1B PH 4.8 4.8 INNESC MINESC S NO 1 VERM 20 20 20 20 20 20 215	ASTE) 8A HZO PCT 36.5 TA AGP ALOGY HLURIC EXTRA MILLI IT LT 40 30 30 30	NA 502 ESP PCT Z ICULTI X-RA' DIGE CTANT ALDGY TE K.	NA SE SAK SAK SAK SAK SAK SAK SAK SAK SAK SAK	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPM 40 AVAIL) UARTZ) UARTZ) 0 5 5 5	2-3D 2-2D 2-1D 1-8D GYP 6F1A PCT TOTAL -ABLE 1354	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.21 0.21 0.	0.3 0.3 0.3 0.2 6NIB GA (18.4 17.0 16.3 6018 MG 0.3 0.3	SATURA 6P1B NA 0.3 0.3 IMATED. GO-PENET ISTANCE FORCE E STREN HOD 6N4	TRATICO BULK TRATICO BULK OF OA (KG) A GTH- RBON I C FOR	XTRACT 611A CO3 / LITER DN RESI DENSI 6 CH UND NOT NO NOT SI 1 KC A AND CO A CO A CO A CO A CO A CO A CO A CO	STANCE TY CLC SING / ESTI	0.52 0.50 0.49 0.48 	66 1A SO4 	6 CM DI ATED AT ETROMET OF 1 M	ATTERB 4F1 LQID LMIT PCT 42E 38E 29E 29E	ERG FF2 PLST INDX 16 17 15 SLOWLY BAR, NITS
CN 000-22 022-31 031-40 040-58 058-79 079-106 106-133 133-175 175-200 200-270 ANALYSE: ST PAUL PHORUS, PHORUS, PHORUS,	0.11 0.07 0.03 0.03 0.02 (SATUR, 861 REST CHM-CM SBAY, NITRI BRAY: (4.8 INNESCR MINESCR MI	ASTE) 8A HZO PCT 36.5	NA 5D2 ESP PCT Z ICULTI X-RAS DIGE CTANT RALOGY TE K.	NA SE SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR	13.40 15.70 14.40 14.10 SALT 805 TOTL SOLU PPH 40 40 XPERIME YSIS. AVAIL UARTZ	2.3D 2.2D 2.1D 1.8D GYP 6F1A PCT TOTAL ABLE TOTAL 1354 666 784	0.2 0.2 0.2 0.2 0.2 0.2 8A1A EC MMHOS/ CM PHOS- PHOS- PHOS- 31 12 9 9 10 18 25 4	0.3 0.3 0.3 0.2 6NIB GA (18.4 17.0 16.3 6018 MG 0.3 0.3	SATURA 6P1B NA 0.3 0.3 IMATED. GO-PENET ISTANCE FORCE E STREN HOD 6N4	TRATICO BULK TRATICO BULK OF OA (KG) A GTH- RBON I C FOR	XTRACT 611A CO3 / LITER DN RESI DENSI 6 CH UND NOT NO NOT SI 1 KC A AND CO A CO A CO A CO A CO A CO A CO A CO	STANCE TY CLC SING / ESTI	0.52 0.50 0.49 0.48 	66 1A SO4 	6 CM DI ATED AT ETROMET OF 1 M	ATTERB 4F1 LQID LMIT PCT 42E 38E 29E 29E	ERG FF2 PLST INDX 16 17 15 SLOWLY BAR, NITS

Pedon classification: Aquollic Hapludalf; fine-loamy, mixed, mesic. Series classification: Udollic Ochraqualfs; fine-loamy, mixed, mesic.

Soil: Skyberg taxadjunct*.

Soil No.: S70MN-20-3.
Location: Dodge County, Minnesota; about 4 miles north of Hayfield; about 200 feet east and 400 feet south of the northwest corner of SEI/4 of MML/4, Sec. 35, T. 106 N., R. 17 W. About 92 deg. 50 min. west longitude, and about 43 deg. 57 min. north latitude.

Climate: Aumid continental. Some features of precipitation in inches: annual normal - 29, May through September - 19, annual normal snowfall - 40. Some features of temperature in deg. F.: annual normal - 45, summer normal - 70, winter normal - 18.

Parent material: Loamy mantle (loss?) over loamy calcareous Kansan(?) till with a thin intervening stone line.

Physiography: Central Lowlands; Iowan Erosion Surface (Ruhe); Rochester Till Plain (Wright); Kenyon-Taopi Plain, silty, undulating (MN Soil Atlas).

Landscape setting: Site has a 1/2 percent slight convex slope on the crest of a broad summit.

Topography in the immediate vicinity is gently rolling, and relative relief is about 20 feet.

Elevation is about 1,315 feet. Major soils in the area are of the Kasson, Racine, and Skyberg series.

Vegetation: Corn field. Native vegetation was tall grass prairie or savanna.

Drainage: Somewhat poorly drained.

Erosion: Slight.

Moisture: Moist to wet. Area recently had prolonged heavy rains. Water entered the pit at the contact of the two sediments and between prism faces.

Root distribution: Common to 23 inches; few below.

Permeability: Moderate in upper part of solum grading to slow or moderately slow in the IIC horison.
Described by: J. F. Cummins on October 20, 1970.

Sampled by: R. B. Grossman, E. R. Gross, and J. F. Cummins on October 20, 1970.

- Ap 70Il079 0 to 22 cm (0 to 9 inches) Very dark gray (10YR 3/1) silt loam; weak fine subangular blocky structure; friable; abrupt smooth boundary.
- 1 7011080 22 to 31 cm (9 to 12 inches) Dark grayish brown (107R 1/2) silt losm; few fine distinct light olive brown (2.57 5/4) mottles; few very dark gray (10YR 3/1) wormcasts; weak medium platy structure parting to weak very fine subangular blocky structure; friable; many fine tubular pores; abrupt smooth boundary
- 7011081 31 to 40 cm (12 to 16 inches) Olive brown (2.57 4/3) silt loam high in content of sand; few fine distinct dark gray (2.57 4/1) and light clive brown (2.57 5/6) mottles; moderate fine and medium subangular blocky structure; friable; many fine tubular pores; fine Fe-Mn oxide masses; abrupt wavy boundary.
- 2 7011082 40 to 58 cm (16 to 23 inches) Olive brown (2.5Y 4/3) loam; few fine faint dark gray (10TR 4/1) and light olive brown (2.5Y 5/6) mottles; moderate fine and medium subangular blocky structure; friable; many fine tubular pores; few Fe-Mn oxide masses; clear wavy boundary.
- IB23 70L1083 58 to 79 cm (23 to 31 inches) Light brownish gray (2.5Y 6/2) loam; light brownish gray (2.5Y 6/2) ped faces; many fine distinct light clive brown (2.5Y 5/8) mottles; moderate medium

	and coarse prismatic structure parting to moderate fine and medium subangular and angular blocky structure; friable; few Fe-Mn oxide masses; about 8 percent coarse fragments in upper part and about 8 percent in remainder; clear wavy boundary.
-	TTDOLA 7011.00k - 70 4 - 306 (23 4 - 1/2 4 - 24 - 3 T-21 - 4 - 1/2
_ ^ _	
	<u>-</u>
, TE TE	
' • <u> </u>	
j'	
	1
<u> </u>	
, E	
•:	•.
-	
<u>-</u>	
L _{PF}	
	5)
1 1 1	
r Mar	

SCIL NC - - - - - S67MN-54-5

COUNTY - - - NORMAN

U. S. DEPARTMENT OF AGRICULTURE SOIL CENSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, AEERASKA

GENERAL METHCCS- - -14.1818.241.28

SAMPLE NOS. 671610-618

PEBRUARY 1977

DEPTH . CP		IZCN	(SAND 2- •05	SILT .05- .cc2		FINE CLAY	vcos 2-	CCRS	LE SIZE SAND - MEDS -5- -25 - PC	FNES .25- .10	VFNS .10-	COSI	-SILT- FNSI .02 .002	3A1A, VFSI .005) FAPL TEXT - SANC 21	1 NTR 11 .2- .02	FINE CLAY TO CLAY PCT	NON- CO3- CLAY	8D1 15- BAR TC CLAY
COC-25 C25-28 C38-51 C51-66 C66-81 C81-99 C99-140 C53-71 C71-86	A20 C10 C20 C3 C4	E A C A	85.6 79.1 83.2 85.2 87.5 91.0 94.2 88.4 77.7	9.0 8.2 7.2 6.8 6.0 4.4	6.4 11.9 8.6 7.6 5.7 3.0 1.4 4.3		TR •1 •1 •1 •1 •1		2.C 1.7 1.7 1.5 .6 .5 .4 2.1	46.0 42.4 46.1 48.7 49.2 51.9 57.4 53.8 41.7	36.7 34.3 34.7 34.6 37.5 38.5 36.6 31.2	3.9 4.1 3.5 2.9 3.2 2.6 2.1 2.3	4.1 4.9 4.7 4.3 3.6 3.4 2.3 5.0		48.9 44.8 48.5 51.2 50.0 52.5 58.2 57.1	81.7 76.2 75.3 81.6 88.9 92.2 94.8 81.6 75.6		5	.67 .44 .42 .42
СЕРТН	(PART) VEL. GT 2 PCT	CLE S (GT 75 PCT	75-26	ALYSIS WE 0 20-5 - PCT	, MM, IGHT - 5-2 LT 75	38, 38	I. 382	3 (At:	LK DEN: 4A1H OVEN DRY G/CC	SITY 1 401 COLE	481C 1/1C BAR PCT	WAT 481C 1/3- 8AR PCT	ER CCI 482 15- BAR PCT	4C1 HRD GM/ GM		6EIB LT 2 PCT	PC T	8C1A 1/1 H2O	BC1E 1/2 CACL
COC-25 C25-38 C36-51 C51-66 C66-81 C81-59 C95-140 C53-71 C71-86	C TR TR IR C TR	00000	000000	C TR C C C TR	C TR TR TR C TR C	24 3C 26 22 24 15 17 21	TR TR TR	1.668	1.58 1.63 1.65 1.62 1.53	-004 -004	15.C 15.8	19.C	3.2 2.2 .7 .6 1.6 7.2	.20 .20 .22		5 13 11 13 15 13	1 5 3 1 TR TR I	8.0 8.2 8.3 8.4 8.3	
CM	GALA ORGN CAPE PCT	681A NLTG PCT	C/N	6C2A EXT FE PCT	651A TOTL PCT	6NZE CA	604C MG	6PZA NA 	ASES SE 602A K	SUM EXTB / 100	ACTY 6H1A BACL TEA G	AL 6G1C KCL Ext	5A3A Extb Acty	EXCH) SAGA NHAC	8D2 NHAC TC) CLAY	8D3 CA TC MG	SAT NHAC PCT	SC3 EXTE ACTY PCT	SATI SCI NHAC
COC-25 C25-38 C38-51 C51-66 C66-61 C81-59 C95-140 C53-71	1.550 .56 .44 .22 -11	.13	8 11 1 11 2 10				2.8 3.6 2.3 1.2 .7 .5 .4	.1 .1 .1 .1 .1	.1 .1 .1 .1					9.4	1.88 .79 .58				
DEPTH	(SATUR 8E1 REST CHM- CM	ATEC 8C1P PH	BA H2C PCT	NA 5D2 ESP PCT	NA 5E Sar	SALT 8D5 TOTL SCLL PPM	GYP 6F1A PCT	8A1A EC MHOS/ CH	6N1B CA	6018 MG	6P1A NA	601A K MEQ	611A CC3 / LITER	AILA HCC3	6K1A CL	6L1A SC4	6#1A NC3	4F1 LQID LMIT	4F2 PLST
CCC-25 C25-38 C36-51 C51-66 C66-81 C81-59 C99-140 C53-71 C71-86			24.5					.61	,										

⁽A) ESTIMATEC.
(B) 1/10-PAR, METHCO 4AIG.
(C) 10 KG CF CARBON PER SQ METER TO A DEPTH OF 1 METER, METHOD 6A.

Soil classification: Aeric Calciaquoll; sandy, frigid.

Series: Ulen series.

Pedon No.: S67MN-54-5.

Area: Norman County, Minnesota

Location: SEASEASEA sec. 19, T. 144 N., R. 44 W. (Wild Rice Tps.); 20 feet south and 430 feet west of the

junction of windbreak and north-south township road in that corner of section 19.

Climate: Some characteristics of temperature in degrees F. are: annual normal - 41, winter normal - 10, summer normal - 68; some characteristics of precipitation in inches are: mean annual - 20,

May to September - 14, mean snowfall - 35.

Vegetation: Recently plowed field that was in small grains this summer.

Parent material: Sandy, calcareous, lacustrine sediments associated with glacial Lake Agassiz.

Physiography: Glacial Lake Agassiz plain; site occurs in an area between the Campbell and Norcross beach ridges.

Topography: Slope at sample site is about 1 percent to the south; site occurs on the lower part of a gently or very undulating area. Local relief is about 2 to 4 feet. Slope at site is slightly convex.

Drainage: Moderately well to somewhat poorly drained.

Ground water: At 70 inches.
Permeability: Moderately rapid.

Moisture: Moist throughout.

Sampled by: R. H. Jordan, G. S. Holmgren, D. D. Barron and H. R. Finney on October 17, 1967.

Described by: H. R. Finney.

Ap 67L610 0 to 25 cm (0 to 10 inches) Black (10YR 2/1) light fine sandy loam; weak medium subangular blocky structure parting to weak fine granular structure; very friable; roots plentiful; strongly effervescent; abrupt smooth boundary.

A3ca 67L611 25 to 38 cm (10 to 15 inches) Very dark gray (10YR 3/1) light fine sandy loam; weak fine and medium subangular blocky structure; very friable; roots plentiful; violently effervescent; clear wavy boundary.

Clca 67L612 38 to 51 cm (15 to 20 inches) Dark grayish brown (10YR 4/2) heavy loamy fine sand; few fine faint grayish brown (10YR 5/2) mottles; weak fine and medium subangular blocky structure; very friable; roots few; violently effervescent; clear smooth boundary.

C2ca 67L613 51 to 66 cm (20 to 26 inches) Yellowish brown (10YR 5/4) fine sand near loamy fine sand border; weak medium subangular blocky structure breaking easily to single grains; very friable; roots few; about 5 percent root channel fillings of dark grayish brown (2.5YR 4/2) strongly effervescent; clear smooth boundary.

C3 67L614 66 to 81 cm (26 to 32 inches) Brownish yellow (10YR 6/6) fine sand; weak medium subangular blocky structure breaking easily to single grains; very friable; roots few; discontinuous horizon occupying about 60 percent of the faces of the pit; slightly effervescent; clear smooth boundary.

C4 671615 81 to 99 cm (32 to 39 inches) Olive yellow (2.5Y 6/6) to brownish yellow (10YR 6/6) fine

		7]-
NA-	kir y	
k-		
t en en en en en en en en en en en en en		

SOIL CLASSIFICATION-AERIC CALCIAQUOLL SANDY. FRIGID SERIES - - - - - - - - - - - - - - ULEN

SOIL NO - - - - - S67MN-54-6

COUNTY - - - NORMAN

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE. MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

GENERAL METHCCS- - -14,1818,241,28

SAMPLE NOS. 67L619-67L625

PEBRIARY_1977

C #			SAND 2+ -05	•05- •002	.002	FINE GLAY LT .CGO:	vcos 2-	1- •5	MEDS -5- -25	FNES •25- •10	VFNS •10- •05	.05 .05	FNS1 .02 .002	.005 .002	TEXT - SANC 21	1	CLAY TO CLAY PCT	NON- CO3- CLAY	TO
CCC-25 C25-43 C43-56 C56-86 C86-109 109-140 14C-157	205	A	90.4 88.1 93.1 91.1 93.4 51.3	5.1 6.0 4.3 7.2 5.2 44.8 44.2	2.6		.4 -1 .4 .2 TR -1	1.0 .9 .2		65.8 70.3 64.8 63.9	22.5 20.3 20.2 24.1 28.8 49.7 51.0	2.5 2.7 2.2 2.4 2.7 40.4 4C.7	2.6 3.3 2.1 4.8 2.5 4.4 3.5		67.8 72.9 67.0 64.5	82.4 83.6			•6(
CEPTH	VOL. GT 2 PCT	(GT 75 PCT	75-20	- WE	IGHT - 5+2 .T 75 -	LT .C74	20-2 PC1 LT20) 4A1G 1/3- BAR	4A1H OVEN DRY G/CC	401 COLE	481C 1/10 BAR PCT	4B1C 1/3- BAR PCT	4B2 15- BAR PCT	4C1 WRD CM/ CM		PCT PCT	3A1 A LT -CO2 PCT	(PH 8C1A 1/1 H2O	8C16 1/2 CACI
COC-25 C25-43 C43-56 C56-86 C86-109 1C5-14C	TR TR TR TR TR	0 0 0 0 0	o c	TR C TR	TR fr fr	14 17 11 13 12 53	IR IR IR IR TR	1.60A 1.66 1.60A 1.57 1.52	1.65	.002	13.9		2.7 2.4 .9 .7 .9 2.2 1.9	.19		3 7 7 12 10 23 24	TR	8.0	
CEPTH (6BIA NITG			651A TOTL	6NZE CA	604C MG	6PZA	SES SE 6QZA K	SUM EXT8	ACTY 6H1A BACL TEA	AL 6G1C KCL EXT	CAT SA3A EXTB ACTY	EXCH) 5A6A NHAC	RATIO 8D1 NHAC TC CLAY	TO MG	CA 5F SAT NHAC PCT	(BASE 5C3 EXTB ACTY PCT	SATI SCI NHAC
000-25 025-43 043-56 056-86 086-109 109-140 140-157	.66E .29 -11 .C4 .C4 .C8				****	******	1.6 1.5 .7 .4 .4 1.1	•2 •1 •1 •1	.1 .1 .1 .1 .1				• • • • • •		1.27			. .	**

Soil classification: Aeric Calciaquoll; sandy, frigid.

Series: Ulen series.

Pedon No.: S67MN54-6.

Area: Norman County, Minnesota.

Location: 130 feet south and 280 feet east of the northwest corner of the NW1SW2SW2 sec. 33, T. 144 N., R. 44 W. (Wild Rice Twp.). That corner is the junction of an east-west line of trees (a

windbreak) and a north-south gravel road,

Climate: Some characteristics of temperature in degrees F. are: annual normal - 41, winter normal - 10, summer normal - 68; some characteristics of precipitation in inches are: mean annual - 20, May to September - 14, mean snowfall - 35.

Vegetation: Recently plowed field that was in small grains this summer.

Parent material: Sandy, calcareous, lacustrine sediments associated with glacial Lake Agassiz.

Physiography: Glacial Lake Agassiz plain; site occurs in an interbeach area between the Campbell and
Norcross beach ridges.

Topography: Site occurs on the lower part of a very gently undulating knoll. Slope at site is about a percent.

Drainage: Moderately well or somewhat poor.

Ground water: At 62 inches.

Erosion: Slight.

Permeability: Moderately rapid.

Moisture: Moist throughout.

Sampled by: R. H. Jordan, G. S. Holmgren, D. D. Barron, and H. R. Finney on October 18, 1967.

Described by: H. R. Finney.

Ap 67L619 0 to 25 cm (0 to 10 inches) Very dark gray (10YR 3/1) light fine sandy loam; weak fine subangular blocky structure parting to weak fine and medium granular structure; friable; roots plentiful; slightly effervescent; abrupt smooth boundary.

Clca 67L620 25 to 43 cm (10 to 17 inches) Dark grayish brown (10YR 4/2) grading to grayish brown (10YR 5/2) heavy loamy fine sand; weak medium subangular blocky structure; very friable; roots plentiful; about 2 percent very dark gray krotovinas; violently effervescent; gradual smooth boundary.

C2 67L621 43 to 56 cm (17 to 22 inches) The base color ranges from light yellowish brown (2.5Y 6/4) to light brownish gray (2.5Y 6/5), the latter color occupying about 40 percent of the faces; fine sand; few fine faint light brownish gray (2.5Y 6/2) mottles; weak medium and coarse subangular blocky structure; very friable; few roots; slightly effervescent; clear wavy boundary.

C3 67L622 56 to 86 cm (22 to 34 inches) Light yellowish brown (2.5Y 6/4) fine sand; many fine faint light brownish gray to gray (2.5Y 6/2 to 2.5Y 6/1) and few fine prominent yellowish red (5YR 4/8) mottles; massive; very friable; no roots; slightly effervescent; clear wavy boundary.

C4 671623 86 to 109 cm (34 to 43 inches) Reddish yellow (7.5YR 6/8) fine sand; many coarse prominent light gray (5Y 7/1) mottles; massive; firm in place, loose when disturbed; no roots; about 5 percent black soft 1 to 2 mm vertically elongated concretions; the pattern of colors is not uniform throughout, in places in the upper part the light gray color is dominant; about 1 percent soft black and reddish brown rounded concretions in lower part; slightly effervescent; abrupt smooth boundary.

IIC5 67L624 109 to 140 cm (43 to 55 inches) Gray (5Y 6/1) very fine sand; common medium and coarse prominent yellowish brown (10YR 5/6) and few fine prominent yellowish red (5YR 4/8) mottles; massive; firm in place, very friable when removed and disturbed; no roots; slightly efferwagent; abrupt smooth

boundary.

11C6 67L625 140 to 157 cm (55 to 62 inches) Light brownish gray (2.5Y 6/2) very fine sand; few medium prominent dark brown (7.5Y 4/4) and a few coarse faint light place brown (2.5Y 5/4) mottles; massive; firm in place, very friable when removed; no roots; slightly effervescent.

Remarks: Colors are for moist soil. Samples and descriptions were obtained from the pit with the following dimensions, $3 \times 10 \times 6\frac{1}{2}$ feet in depth. This pedon represents a segment of the series that has a less well developed Cca horizon than the central segment of the series. Soil temperature at 20 inches was 9.0 degrees C. and at 60 inches was 11.5 degrees C.

SCIL NC - - - - - S67MN-54-3

GENERAL METHCOS- - -14,1818,241,28

COUNTY - - - NORMAN

SAMPLE NOS. 671626-671631

FEBRUARY 1977

L. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

DEPTH	hCR!	IZCN	(P, 3A1,						
													-SILT-						
													1 FASI						
			2-	.05-	.002	L L	, (-	. 5	25	+25-	-10-	- 62	.002	.005	- 3ANU	•2-	CLAV	CLAY	BAR
C#			1															PCT	CLAY
00-20	A16		88.4	6.0	5.6		. 1		1.0	44.5	42.2	4.	2.0		46.2	89.0			.5
20-33	E 1		92.0	4.1	3.5		• !	4	.5	50.2	40.9	2 • 9	9 1.2		51.1	92.5			.4
33-46	651		92.9	4.0	3-1		• !		- 3	29.3	47.5	3.0	1.0		55.0	94.0			. 4
346-64 364-97	622 630		53.5	5.2	2 4 7					41.7	52.5	3.	7 2.0		41.4	74.1			.3
57-152			81.9	16.5	1.6			.1	.2	14.7	66.5	14.	2.0 9 1.2 0 1.0 4 2.5 3 2.0 6 1.9		15.0	95.8			
			775 AN			20 20	1. 101		IN DEN	TTV	\		TER CO	NTENT_		1	CNATE	/ D	
	VCL.	(WE	igHt -			1 4a1G	4A1H	4D1	4810	481	6 4B2	4C1		6E18	AIAE	8C1A	 8C1
	GT	Ġſ	75-20	0 20-5	5-2	LT	20-2	1/3-	OVEN	CCLE	1/10	1/3	- 15-	WRD		LT	LT	1/1	1/2
	2	75				.C74	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	- CO 2	H20	CAC
CP													6 4B2 - 15- BAR PCT						
CC-2C	TR	C	Ç	Ç	TR	23	TR	1.48	1.52	.009	22.2		3.C	.28		TR		7.2	
2C-33	TP	0	C	Ç	TR	16	TR	1.66	1.66		13.7		1.6	•20		TR		7.6	
33-40	10	Ç	Č	Č	TR	16	IR TO	1.60	1.54		13.6		1.3	-20		10	IR	7.9	
44-67	",	ř	ŗ	č		25	'6	1.54	1.50		20.2		-6	- 30		11	TR	8.7	
57-152	č	č	ŏ	č	č	48	ā	1.56	1.5C		22.€		3.0 1.6 1.3 1.1 .6	.34	,	14	TR	8.1	
FPIH (DRGANI	C MAT	TF8)										(CAT						E SAT
	6A1A	681A	Ç/N	6C2A	651A	6N2E	6040	6P2A	602A		6H] A	6G11	5A3A	5A6A	801	8C3	5F	503	5C1
	CRGN	NITG		EXT	TOTL	CA	MG	NA	ĸ	SUM	BACL	KCL	€XT0	NHAC	NHAC	ÇA	SAT	EXTB	NHA
	CARE			FE						EXTO	TEA	EXT	ACTY		TC	70	NHAC	ACTY	
		PGT 		PCT	PG T	(ME(1 / 100							PCT		
0C-26 2C-33	.845	-07	8 11 9 9				1.5	• 1	. 1					9.0 1.9	1.61				
23-46	.18	• • • •	, ,					.1	:1					2.7	.87				
46-64	-11													2.2					
64-57							. 4		.i					1.1					
97-152							.6		.1					2.¢					
			PASTE)		NA								EXTRAC						BERG
	8 6 1	8C18	ΔB	5C2	5 E	8D5							611A						
		PH	H2C	ESP						MG	NΔ	K	CC3	HCC3	CL	SC4	NO3	f 01 C	PLST
CF	C+4-		PCT	PCT		SCLL	PCT	MMHCS/ CM	(- MEC	/ LITE	R				PCT	INEX
CC-2C																			
2C-33																			
33-46																			
46-64	000		24.5					6.2											
:64-57 :57-152		, e.z	24.9			εL		.53											

⁽A) ESTIPATEC.
(B) 4 KG CF CARRON PER SC METER TO A DEPTH OF 1 METER, METHOD 6A.

Pedon classification: Aquic Udorthent; sandy over loamy, mixed, frigid.

Series classification: Aeric Calciaguolls; sandy, frigid.

Series: Ulen taxadjunct.

Pedon No.: S67MN-54-3. Area: Norman County, Minnesota

Location: NWinwinEi sec. 18, T. 144 N., R. 44 W. (Wild Rice Twp.).

Some characteristics of temperature in degrees F. are: annual normal - 41, winter normal - 10,

summer normal - 68; some characteristics of precipitation in inches are: mean annual - 20,

May to September - 14, mean snowfall - 35.

Vegetation: Recently plowed alfalfa field.

Parent material: Sandy lacustrine sediments associated with glacial Lake Agassiz.

Physiography: Glacial Lake Agassiz plain; site occurs between the Campbell and Norcross beach ridges.

Topography: Sample site occurs on a very gently sloping knoll; the knoll is about 10 acres in size; slope at site is about 2 percent and it occurs near the crest of the slope.

Drainage: Moderately well or somewhat poorly drained.

Ground water: At 64 inches. Erosion: Slight to moderate.

Permeability: Rapid to moderately rapid.

Moisture: Moist throughout.

Sampled by: R. H. Jordan, G. S. Holmgren, D. D. Barron and H. R. Finney.

Described by: H. R. Finney.

Alp 67L626 0 to 20 cm (0 to 8 inches) Very dark gray to very dark brown (10YR 3/1 to 10YR 2/2) loamy fine sand, weak fine subangular blocky structure; very friable; roots abundant; about 5 percent medium inclusions of dark grayish brown and yellowish brown (10YR 4/2 and 10YR 5/4); thickness varies from 7 to 10 inches in the pit; noneffervescent; abrupt wavy boundary.

(8 to 13 inches) Yellowish brown (10YR 5/4) fine sand; few medium faint dark Bl 67L627 20 to 33 cm grayish brown (10YR 4/2) mottles; weak medium and coarse subangular blocky structure; very friable; roots plentiful; noneffervescent; clear smooth boundary.

67L628 33 to 46 cm (13 to 18 inches) Olive yellow (2.5Y 6/6) grading to brownish yellow (10YR 6/6) fine sand; few fine faint light yellowish brown (2.5Y 6/4) mottles; massive; loose; few roots; slightly effervescent; clear smooth boundary.

B22 67L629 46 to 64 cm (18 to 25 inches) Olive yellow (2.5Y 6/6) fine sand; few fine faint brownish yellow (10YR 6/6) mottles; massive; loose; few roots; slightly effervescent; clear smooth boundary.

B3g 67L630 64 to 97 cm (25 to 38 inches) Light brownish gray and light gray (2.5Y 6/2 and 2.5Y 7/2) fine sand; few medium faint light yellowish brown (2.5Y 6/4) mottles; massive; loose; few roots; about 1 percent 1 to 2 mm soft black concretions and about 0.5 percent soft yellowish red concretions; slightly effervescent; gradual smooth boundary.

(38 to 60 inches) Light brownish gray to light gray (2.5Y 6/2 to 2.5Y 6/1) IIClg 67L631 97 to 152 cm very fine sand; many coarse distinct light olive brown (2.5Y 5/4) and common fine prominent strong brown (7.5YR 5/6) mottles; massive; loose; no roots; about 2 percent 0.5 to 1 mm soft black concretions occurring mainly in the 2.5Y 6/2 and 6/1 parts; slightly effervescent.

Remarks: Colors are for moist soil. Soil temperature at 60 inches was 12 degrees C. and at 20 inches was 9.5 degrees C. Samples and descriptions were obtained from a pit with dimensions of about 3 x 10 x 7 feet in depth. Ten holes were dug within a radius of 50 feet of the sampling site to determine the thickness of the mollic epipedon. The depths in inches follow: 12, 13, 10, 14, 11, 8, 11, 9, 10, and 12 giving an average depth of 10.9 inches. This pedon presently is undefined at the series category. It probably would be considered as a taxadjunct of the Flaming series or possibly the Ulen series.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC SOIL CLASSIFICATION-TYPIC HAPLAQUOLL FINE, MONTMORILLONITIC, MESIC SERIES - - - - - - - WALDORF NATIONAL SOIL SURVEY LABORATORY LINCOLN, MEBRASKA COUNTY - - - BLUE EARTH SOIL NO - - - - - \$69MN-7-6 GENERAL METHODS- - -1A, 1818, 2A1, 28 SAMPLE NOS. 698797-698805 (A) JULY 1976 69L913-69L921 SAND SILT CLAY CLAY VCOS CORS MEDS FNES VFNS COSI FASI VFSI TEXT II CLAY COS- 13-DEPTH HORIZON .005- SAND BAR TO 2- -05- LT 2--5-.25- .10-.10 .05 -05 CLAY -02 CLAY .5 .00z -0002 ĊМ - - - PCT LT 2MM - - -) PCT CLAY 0.44 2.4 11.4 30.2 3.3 000-18 5.7 41.6 52.7 33.6 0.2 0.6 0.7 31.3 0.9 10.6 61 Alz 0.7 2.0 31.3 018-28 028-43 A3 B1G 4.0 36.3 0.4 0.7 2.4 0.44 _38.9 57.1 1.3 1.6 30.2 11-1 0.5 59.8 1.0 36.4 0.4 0.9 0.40 056-69 63.0 33.4 1.0 3.8 30.3 1.9 5.3 53 27.2 0.4 4.8 31.1 1.6 2.5 35.9 47.4 0.9 6.1 B3G 61.6 0.1 CIG 50.9 17.4 0.4 0.3 0.6 0.7 34 081-97 0.1 27.7 0.42 CZG 47.3 51.1 19.6 0.1 0.3 0-4 0.3 1_A 45-5 1.9 38 2Ç3____ 5.3 10.9 12.7 0.47 125-166 16.2 49.4 34.4 (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)(BULK DENSITY)(- - - WATER VOL. (- - - - - WEIGHT - - - - -) 441D 441H 401 481C 481C 48 CONTENT- - - -) CARBONATE (- -PH - -) 481C 481C 1/10 1/3-482 15-6E1B 3A1A 8C1A 8C1E LT LT 1/1 1/2 (- -GT 4C1 WRD H20 CACL PCI PC 1 PCT 1.75 000-18 0 0 0 96 1.16 .147 45.5 6.3 TR 018-28 028-43 043-56 1.72 95 -144 42.6 39.6 24.1 25.2 -18 6-1 TR TR TR 97 41.9 40.6 6.6 ۵ TR 1.14 -20 .138 056-69 069-81 98 1-20 1.77 37.8 36.3 34.8 25.2 25.2 .13 2 7.3 .115 7.6 98 1.22 TR 0 TR 99 99 22.1 16 17 081-97 1.21 1.55 .086 39.3 37.3 -18 1.53 .078 40.0 -23 097-125 TR ٥ O TR 1-22 41.6 7.6 125-166 AL 6G1D SAT (BASE SAT) 5C3 5C1 DEPTH (ORGANIC MATTER IRON PHOS (- -EXTRACTABLE BASES 584A- -) ACTY (CAT EXCH) RATIO RATIO 651A 543A SAGA 6A1A ORGN 4814 6N2E 602D 6P2B 602B 6H2A BACL 801 8D3 C/N 5C2B EXT TOTL SUM NHAC NHAC EXTB NHAC NITE CA MG EXTB TEA EXT ACTY TΩ TO NHA C ACTY -MEQ / 100 PCT PCT (- - - -PCT PCT _____N PCT PCT PCT G-MĢ 49.2 50.3 110 000-18 0.5 42.8 10-4 0.2 0.6 54.0 8.3 62.3 63.5 0.93 87 87 3.81B 54.9 0.98 018-28 4.20 0.330 1.47 0.162 0.5 43-1 11-0 0.6 8.6 13 48-4 028-43 043-56 53.3 0.85 85 90 110 0.6 41.0 0.80 0.6 0. Z 0.5 ŏ.5 46.8 056-69 0.80 069-81 0.54 0.7 0.3 0.9 0.3 0.72 32.6 0.5 081-97 0.39 0.3 0.5 0.64 0.5 0.4 097-125 0.39 125-166 0.38 0.4 20.0 0.58 (-----) ATTERBERG SALT DEPTH (SATURATED PASTE) NA NA BAIA GNIB GOIB GPIA GOIA GIIA GIIA GKIA GLIA GMIA EC CA MG NA K CO3 MCO3 CL SO4 RO3 4F1 4F2 LQID PLST 805 6F1A 8E1 8C18 REST PH 84 502 5E TOTL MMHOS/ OHM-SOLU (+ - + - - - - - MEQ / LITER - - - - - - - - -) PCT PCT PCT CH CH 000-18 018-28 028-43 85C 49 043-56 056-69 069-81 72C 41 081-97 2000 097-125 2000 7.4 125-166 ABALYSES BY MINNESOTA AGRICULTURAL EXPERIMENT STATION. (A) BULK DENSITY AND WATER CONTENT ANALYSES BY THE SOIL SURVEY.

ST PAUL, MN. MINERALOGY BY X-RAY ANALYSIS. TOTAL INVESTIGATIONS UNIT, LINCOLN, NE. UNLESS OTHERWISE INDIPHOSPHORUS BY NITRIC-PERCHLORIC DIGESTION. AVAILABLE CATED REMAINING ANALYSES BY THE SOIL SURVEY INVESTIGATIONS. ST PAUL, MN. MINERALOGY BY X-RAY ANALYSIS. TOTAL
PHOSPHORUS BY NITRIC-PERCHLORIC DIGESTION. AVAILABLE
PHOSPHORUS BY BRAY'S NO 1 EXTRACTANT. UNIT, BELTSVILLE, MD.

(B) DRGANIC CARBON IS 20 KG/M SQ TO A DEPTH OF 1 M (6A).

(C) LL AND PI BY SOIL MECHANICS LAB, USDA-SCS, LINCOLM, --MINERALOGY-TOTAL AVAIL DEPTH RM ILLITE KAOL --PCT LT .002MM-MONT VERM QUARTZ (--- RS/A---) 1460 23 000-18 20 10

18 688 4

806

1128

018-28 028-43

056-69 069-81 081-97

097-125

125-166

75

85

0

10

10

5

5

5

n

Pedon classification: Typic Haplaquoll; fine, montmorillonitic, mesic.

Series classification: Same .

Soil: Waldorf series .

Soil No.: S69MN-7-6.
Location: Blue Earth County, Minnesota; NEI/h of SWI/h, Sec. 26, T. 105 N., R. 27 W. (Sterling Twp.); about 360 feet west and 100 feet south of northeast corner of SWI/h, Sec. 26. About 94 deg. 2 min. west longitude and 43 deg. 53 min. north latitude.

Climate: Examid continental. Some characteristics of temperature in deg. F. are: annual normal - 16. winter normal - 17, summer normal - 71; some characteristics of precipitation in inches are: annual normal - 28, May through September - 18, normal annual anowfall - 40.

Parent material: Moderately deep, fine textured lacustrine sediments over grayish, calcareous, loany glacial till (New Ulm) of the Des Moines Lobe, Late Wisconsin age.

Physiography: Central Lowlands; glacial Lake Minnesota Plain in the Elue Earth Till Plain of H. E.

Wright (1972).

Landscape setting: About 1/2 percent, slightly concave slope. General topography is nearly level to very gently undulating. Relative relief in the immediate vicinity is about 5 feet. Elevation of site is 1,025 feet. Major associated soils on the landscape near this site are of the Inra and Collinwood series.

Vegetation: Recently plowed out field; native vegetation was tall grass prairie.

Drainage: Poorly drained.

Erosion: Slight.

Permeability: Slow in upper part, moderate in the glacial till.

Described by: R. J. Edwards and H. R. Finney on October 22, 1969.

Sampled by: L. Shields, R. H. Rust, R. J. Edwards, J. F. Commins, J. J. Murray, and H. R. Finney on October 22, 1969.

- 69B797 O to 18 cm (O to 7 inches) Black (N 2/) silty clay; weak to moderate very fine and fine subangular blocky structure; firm, plastic and sticky; abrupt smooth boundary.
- L2 69B798 18 to 28 cm (7 to 11 inches) Black (N 2/) silty clay; moderate very fine subangular blocky structure; firm, plastic and sticky; clear smooth boundary.
- 69B799 28 to 43 cm (11 to 17 inches) Black (10YR 2/1) and very dark gray (10YR 3/1) silty clay; moderate very fine subangular and angular blocky structure; very firm, plastic and sticky; clear smooth boundary.
- g 69B800 43 to 56 cm (17 to 22 inches) Very dark gray (5Y 3/1) and dark gray (5Y 4/1) clay; weak fine and medium prismatic structure parting to moderate very fine subangular and angular blocky structure; very firm, plastic and sticky; clear smooth boundary.
- 69B801 56 to 69 cm (22 to 27 inches) Dark gray (5Y 4/1) clay; common fine faint clive gray (5Y 4/2) mottles; weak to moderate fine and medium prismatic structure parting to moderate to strong very fine angular blocky structure; very firm, plastic and sticky; few thin tongues of very dark gray (5Y 3/1) 5 to 10 cm apart: clear smooth boundary.
- 69B802 69 to 81 cm (27 to 32 inches) Olive gray (5Y 4/2) clay; few fine faint clive (5Y 5/3) B3g mottles; weak to moderate fine and medium prismatic structure parting to moderate to strong very fine and fine angular blocky structure; very firm, plastic and sticky; few thin very dark gray (5Y 3/1) and dark gray (5Y 4/1) tongues; clear smooth boundary.
- 69B803 81 to 97 cm (32 to 38 inches) Olive gray (5Y 5/2) light silty clay; common fine distinct olive (5Y 5/4 and 5Y 5/6) mottles; weak medium prismatic structure parting to moderate very fine subangular blocky structure; firm, plastic and sticky; few thin very dark gray (57 3/1) and dark gray (5Y 4/1) tongues; slightly effervescent; clear smooth boundary.
- C2g 69B8O4 97 to 125 cm (38 to 49 inches) Olive gray (5Y 5/2) silty clay; common fine prominent light clive brown (2.5Y 5/4 and 2.5Y 5/6) mottles; weak medium and coarse prismatic structure parting to weak very fine and fine subangular blocky structure; firm, plastic and sticky; few lime pebbles; about 5 percent soft lime masses; few streaks of light gray (5T 7/2) segregated lime; strongly effervescent; clear smooth boundary.
- 103 698805 125 to 166 cm (49 to 65 inches) Olive gray (5Y 5/2) clay leam or silty clay leam; many fine prominent light clive brown (2.5Y 5/4 and 2.5Y 5/6) mottles; weak fine and medium subangular blocky structure; friable, slightly plastic to plastic; about 2 percent coarse fragments; few masses of light gray (5Y 7/2) segregated lime; strongly effervescent.

Remarks: Colors are for moist soil. These samples were obtained from a pit with approximate dimensions of lr 3.7 2 m.in denth. This medon is representative of the widdle comment of the middle commen

SOIL CLA Series -			FINE	, MONT	MORILL	DNITIC	, MESI	c						Si N.	OIL CO Ationa	NSERVA	ENT OF Tion S Surve Aska	ERVICE	, MTS
OIL NO			- S69M	N-7-8	(COUNTY		BLUE	EARTH					-	INCOLN	* 4554			·
ENERAL	METHO	DS	-1A+ 1	1818,	2A1, 2	В		SAMP	LE NOS.		1 -69B 6 2-69 L 96			J T	ULY 1970	5		•	
DEPTH	HORI	ZON	(LE SIZE										
			SAND		£1.14				SAND -								FINE		8D)
			2-	.05-		LT	2-	l-	MEDS	•25-	-10-	-05	+02	-005	- SAND		CLAY	CD3-	15- BAR
			.05	.002	-002	-000	2 1	.5	. 25	-10	-05	- 02	.002	-002	21	+02	CLAY		TO
CM			(PC1	LT 2M	#) PCT	PCT	CLAY
00-23	AP		7.7	53.2	39-1	24.3	0+2			2.1	4.4	15.3		9.6		21.1	62		0-4
23-38	A12		7.4				0.2			2.1	4.1	12.5			3.3	18.0	65		0.4
38-51 51-71	81G 82G		8.2 7.0			22.4 21.9	0.3 0.1			2.1	4.6 3.3	16.3			3.6		63 69	<u></u>	0.4
71-88	B31	G		38.1			0.1			1.6	2.0	8.5				11.5	63		0.4
88-114	8320	5	4.2	41.4	54.4	30.8	0.3	0.4	0.5	1.4	1.6	3.8	37.6		2.6	6.3	57		0.4
14-135	C16		5-0		48.2	26.7	0.1			2+0	1.8	5.3			3+2				0.4
35-158 58-183	C26 C36		8.4 11.2		39.2 39.0	14.5 17.1	0-4		1.6 1.6	3.0 4.6	2.3 3.3	11.7				15.6	37 44		0.5
70.103	430			4,700	37.00		040		1.00	7.0							·		•••
									LK DENS					NTENT-) ÇARB 6E1B			
	GT.	GT		0 20-5		LT		1 4A1D 1/3-	4A1H QVEN		1/10	481C 1/3-		WRD		LT	3A1A LT	8C1A	1/2
	2.	75				-074	PCT	BAR	DRY		BAR	BAR	BAR	CH/		ž	-002		CAC
CM	PCT	PCT	(LT 75 ·			e/cc	6/CC		PCT	PCT	PCT	CM		PCT	PCT		
00-23	TR	0	0	0	TR	96		1.28	1+60	-077	30.4	29.2	18.5					6.4	
23-38	TR	¢	٥	G	TR	96		1.29		.075	37.0	34.6						6.5	
38-51	TR	0	0	0	TR	95		1.31		.053	33.6	31-1						6.5	
51- <u>71</u> 71-88	TR TR	0	0	0	TR TR	95 97		1.29		.113	35.2 39.8	34.8 37.6						6.4	
88-114	ŤR	ŏ	ŏ	ŏ	ŤŘ	97		1.27	1.88	.140	39.0	38.2		.18	0.70	1.		6.9	
14-135	TR	0	0	0	TR	96		1.31	1.76	- 104	35.8	35.3						6.9	
135-158 158-183	TR TR	0	0	0	TR TR	94 91		1.28		.075	37.8 37.6	36.1 35.6		.21 .21		5 10		7.4 7.6	
	•••		·		, n	,.			1170										
DEPTH (C	RGANI			I RON 6C2B		(E			ASES SE	14A)		AL 6G1D		EXCH)	RATIC 8D1	RATIO 8D3	CA SF	(BASI	E SAT
	ORGN	NITE	C/ 11	EXT	TOTL		MG	NA	60,2B K	SUM	6H2A BACL	KCL	EXTB				SAT	EXTB	NHA
	CARB			FE						EXTB	TEA	EXT	ACTY		TO	TO	NHAC	ACTY	
CM	PCT	PCT		PCT	PCT	(MEC	/ 100	G			1	ÇLAY	MG	PCT	PCT	PCT
00-23	3.77C	0.280) 13																
23-38	3.23	0.239	14																
38-51		0.121																	
)51-71 \71-88		0.072	12																
)71-88 88-114																		- -	
14-135																			
35-158								-											
58-183	0.16																		
	SATUR			NA	NA	SALT	GYP				CAT:IDA		EVTDAC			<u>-</u>		ATTED	
	8E1		84	5D2	5E	8D5	6F1A	BAIA						6J1A		6L1A		4F1	
	REST		H20	ESP	SAR	TOTL		EC	CA	MG	NA	K	C03	HC03	ČL		NO3	LQID	PLST
	OHM-					SOLU		MMHOS/	_					_				LMIT	INDX
CM	CM		PCT	PÇT		PPM	PCT	CM .	(. <u></u>		MEQ	/ LITE	R			;	PCI	
00-23																			
23-38 38-51																			
51-71																			
71-88																			
88-114																			
	2000																		
35-158	2000	7.4																· ···• · ·	
58-192																			
58-183																			

PHOSPHORUS BY NITRIC-PERCHLORIC DIGESTION. PHOSPHORUS BY BRAY'S NO 1 EXTRACTANT.

DEPTH	MONT	VERM	ILLITE		QUARTZ	TOTAL P {LB!	P
000-23 023-38	70	0	20	5	5	1244	87 71
038-51 051-71 071-88	70	0	50	10	0	648	11
088-114 114-135						950	3 10
135-158 158-183						1310	23 22

- CATED REMAINING ANALYSES BY THE SOIL SURVEY INVESTIGATIONS UNIT, BELTSVILLE, MD.
- (B) MICRO-PENETRATION RESISTANCE A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10-BAR, A DISTANCE OF 0.6 CM USING A POCKET PENETRORETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH.

 (C) ORGANIC CARBON IS 24 KG/M SQ TO A DEPTH OF I M (6A).

Pedon classification: Typic Haplaquoli; fine, montmorillonitic, mesic.

Series classification: Same.

Soil: Waldorf series.

Soil: Waldorf series.

Soil No.: S69 MN-7-8.

Location: Elie Revth County Minnesota: SWI/h of SWI/h. Sec. 27. T. 106 N. R. 29 W. (Ceresco Typ.)

SOIL CLASSIFICATION-TYPIC SPHAGNOPIBRIST DTSIC, PRIGID SERIES - - - - - - WASKISH SOIL NO - - - - S73MN-69-2 11 181P.211.28

COUNTY - - - ST. LOUIS

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBEASKA

GENERAL METHODS 1A, 1812, 2A1, 28							SAMPI	LE NOS.	73L6	16-731	L622		MAI	ICH 197				
DEPTH	HCRIZON	(SILT .05-	CLAY LT .002	FINE CLAY LT .0002	VCOS 2- 1	CORS		FNES . 25 -) VPNS -10-	COSI .05	FWSI .02 .002) VFSI .005-	PANL TEXT SAND 21	INTR II .2- .02	PINE CLAY TO CLAY		8D1 15-
CH		(- 			- -	- PCT	LT 2H	M)	PCT	PCT	CLAY
23-112 112-118 118-223 244-508 508-559	013 0A2 014 0B3 (A)																

PTH	(~ - 8F	(STATE		ECOMPOS 8H		ISTOSO PR 8C1E	L CHAR (BULK 4a3a		ZATION COLE 4D1	SUBS	(1 4B4	FATER 4B1C		-) -) 4C 1	Shear Strength		
	HINL	(FIBER ON BB	ROP)	FYROFR		.01M	FILD	1/3B RBWT	re- Wet	RES- IDUE	FILD	1/3B REWT		WRD CM/	(B)		
CH	PCT	PCT	PCT				G/CC	G/CC		PCT	PCT	PCT		CĦ	KPA		
23-112 12-118	2 2	84 92	80 80	10YR 10YR	7/3 7/3	2.8 2.8	.07			38 30	1130 1470				5.4	÷	
18-223	2	58 59	42 39	10YR 10YR	7/3	3.0	.07			38 52	1150 895				. 7.5 7.0		
508-559	å	65	32	101R	7/2	4.0 5.0	:ii			58	800				9,2		

⁽A) RESULTS FOR 73L619, 73L620, 73L621 AVERAGED AND REPORTED FOR OES HORIZON.

⁽B) KPA = KILOPASCAL.

Pedon classification: Typic Sphagnofibrist; dysic, frigid

Series classification: Same.

Soil: Waskish series.

Soil No.: \$73MN-69-2 (MAES-CFC No. 1481)

- Location: St. Louis County, Minnesota; about 9 miles east of Floodwood; about 100 feet north of the southeast corner of Sec. 3, T. 51 N., R. 19 W.; about 46.9 deg. north latitude and 92.8 deg. west longitude.
- Climate: Humid continental. Mean annual temperature is 39 deg.F.; mean summer temperature is 64 deg.F.; and mean winter temperature is 11 deg.F. Mean annual precipitation is 28 inches; May through September precipitation is 18 inches; mean annual snowfall is 60 inches. Frost-free period

- Parent material: Organic soil material derived primarily from sphagnum moss and herbaceous plants over limnic materials over loamy glacial lacustrine sediments of Late Wisconsin age.
- Physiography: Central lowlands; Upham Lacustrine Plain. Site is about 2 miles north of the boundary between this lake plain and the Highland Moraine. The lake plain is level. Elevation is about 1.325 feet. Site is near the crest of a raised bog.
- Vegetation: Black s ruce forest with about 90 percent crown cover; understory consists of small black spruce, labrador tea, blueberry, and lingonberry; sphagnum mosses cover about 70 percent of the ground surface and hypnum mosses cover the remaining surface.
- Size of bog: About 15 square miles; raised portion is about 1 square mile.

Distance to adjacent mineral land: About 2 miles

Microrelief: Hummocky; hummocks of sphagnum and hypnum mosses extend as much as 20 inches above general surface.

Depth to water table: About 10 inches.

Subsidence: Slight; roadside ditch about 100 feet south of the site.

- Observers: The upper 575 cm described by H. R. Finney and R. S. Farnham on Sept. 18, 1969. The remaining portion of pedon was described, samples collected, and shear strength measured on July 11, 1973 by E. L. Bruns, J. H. Day, L. Dunnigan, R. S. Farnham, H. R. Finney, M. Levesque, W. C. Lynn, and W. E. McKinzie. Samples were obtained with Macauly peat sampler.
- Oil 0 to 5 cm Dark yellowish brown (10YR 4/4, broken face) fibric material, light gray (10YR 7/1, rubbed and pressed); about 95 percent fiber, about 90 percent rubbed; massive; nonsticky; sphagnum moss fiber; about 5 percent woody fragments; about 5 percent mineral material; clear wavy boundary.
- Oel 5 to 13 cm Dark reddish brown (5YR 2/2, broken face, rubbed, and pressed) hemic material; about 40 percent fiber, about 20 percent rubbed; massive; nonsticky; mostly herbaceous fiber with about 10 percent mineral material, about wavy boundary.
- Oi2 13 to 17 cm Dark brown (7.5YR 4/4, broken face) fibric material, pale brown (10YR 6/3, rubbed), dark yellowish brown (10YR 4/4, pressed); about 90 percent fiber, about 70 percent rubbed; massive; nonsticky; sphagnum moss fiber; about 5 percent woody fragments; about 5 percent mineral material; clear wavy boundary.
- Oal 17 to 23 cm Very dark brown (10YR 2/2, broken face, rubbed, and pressed) sapric material; about 30 percent fiber, about 15 percent rubbed; massive; slightly sticky; mixed sphagnum moss, herbaceous, and woody fiber; about 15 percent mineral material; clear wavy boundary.
- Ot3 731616 23 to 112 cm Dark brown (7.5YR 4/4, broken face) fibric material, brown (7.5YR 5/4, rubbed

Pedon classification: Typic Sphagnofibrist; dysic, frigid.

Series classification: Same.

Soil: Waskish series.

Soil No.: S73MN-69-2. (MAES-CFC No. 1481).

Location: St. Louis County, Minnesota; about 9 miles east of Floodwood; about 100 feet north of the southeast corner of Sec. 3, T. 51 N., R. 19 W.; about 46.9 deg. north latitude and 92.8 deg. west longitude.

Climate: Humid continental. Mean annual temperature is 39 deg. F.; mean summer temperature is 64 deg. F.; and mean winter temperature is 11 deg. F. Mean annual precipitation is 28 inches; May through September precipitation is 18 inches, mean annual snowfall is 60 inches. Frost-free period is 84 days.

Parent material: Organic soil material derived primarily from sphagnum moss and herbaceous plants over limnic materials over loamy glacial lacustrine sediments of Late Wisconsin age.

Physiography: Central lowlands; Upham Lacustrine Plain. Site is about 2 miles north of the boundary between this lake plain and the Highland Moraine. The lake plain is level. Elevation is about 1,325 feet. Site is near the crest of a raised bog.

Vegetation: Black spruce forest with about 90 percent crown cover; understory consists of small black spruce, labrador tea, blueberry, and lingonberry; sphagnum mosses cover about 70 percent of the ground surface and hypnum mosses cover the remaining surface.

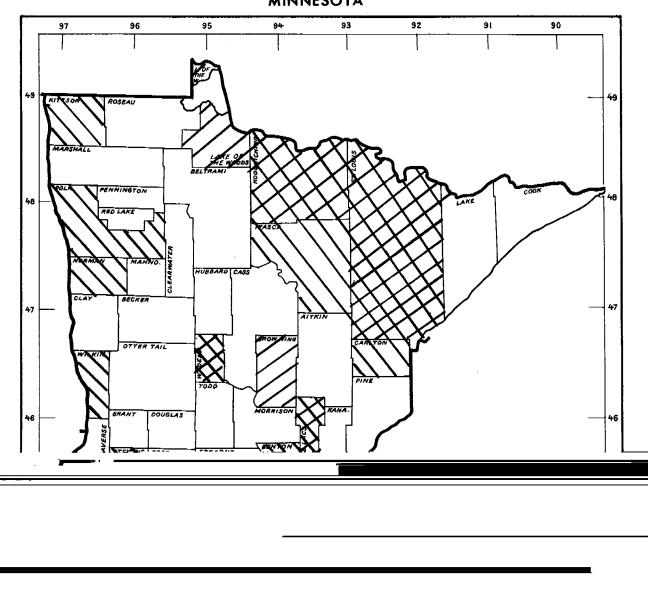
Size of bog: About 15 square miles; raised portion is about 1 square mile.

Distance to adjacent mineral land: About 2 miles.

Microrelief: Hummocky; hummocks of sphagnum and hypnum mosses extend as much as 20 inches above general surface.

Depth to water table: About 10 inches.

Subsidence: Slight, roadside ditch about 100 feet south of the site.


Observers: The upper 575 cm described by H. R. Finney and R. S. Farnham on Sept. 18, 1969. The remaining portion of pedon was described, samples collected, and shear strength measured on July 11, 1973 by E. L. Bruns, J. H. Day, L. Dunnigan, R. S. Farnham, H. R. Finney, M. Levesque, W. C. Lynn, and W. E. McKinzie. Samples were obtained with Macauly peat sampler.

- Oe2 223 to 244 cm Dark brown (7.5YR 3/2, broken face, rubbed and pressed) hemic material; about 40 percent fiber, about 20 percent rubbed; massive; nonsticky; herbaceous fiber with about 2 percent woody fiber and fragments; about 10 percent mineral material; clear boundary.
- Oe3 731620, 731621)
 Oe3 744 to 508 cm Dark brown (7.5YR 3/2, broken face) matrix and strong brown (7.5 YR 5/6, broken face) fiber, dark brown (7.5 YR 3/2, rubbed and pressed); about 60 percent fiber, about 30 percent rubbed; massive; nonsticky; mostly herbaceous fiber with about 3 percent woody fiber and fragments; about 8 percent mineral material; clear boundary.
- O15 731622 508 to 559 cm Dark brown (7.5YR 4/4, broken face and rubbed) fibric material, brown (7.5YR 5/4, pressed); about 80 percent fiber, about 60 percent rubbed; massive; nonsticky; about 80 percent herbaceous fiber and about 20 percent hypnum moss fiber; about 5 percent mineral material; pH 5.3; clear boundary.
- Lco 559 to 575 cm Dark grayish brown (2.5Y 4/2, broken face, rubbed, and pressed) coprogenous earth; about 10 percent herbaceous detritus; massive; nonsticky; about 60 percent mineral material; pH 7.0; gradual boundary.
- IIClg (not sampled) 575 to 585 cm Dark gray (5Y 4/1) silt loam; massive; slightly sticky; noncalcareous; clean smooth boundary.

IIC2q (not sampled) 585 to 595 cm Dark gray (5Y 4/1) loam high in content of very fine sand; massive:

Remarks: This pedon is in the central concept of the Waskish series. Shear strength was measured in the following zones: 58-83, 160-185, 250-275, 350-375, 450-475, 520-545 cm. Also, duplicate bulk samples and duplicate samples of known volume were collected at those depths and also at depths of 105-130 cm.

MINNESOTA

